| 1 | Li F C , Xie C H . Global and blow up solutions to a p-Laplacian equation with nonlocal source. Comput Math Appl, 2003, 46 (10/11): 1525- 1533 |
| 2 | Niculescu C P , Roventa I . Generalized convexity and the existence of finite time blow-up solutions for an evolutionary problem. Nonlinear Anal, 2012, 75 (1): 270- 277 |
| 3 | Alikakos N D , Evans L C . Continuing of the gradient for weak solutions of a degenerate parabolic equation. J Math Pures Appl, 1983, 62 (3): 253- 268 |
| 4 | Zhao J N . Existence and nonexistence of solutions for ut=div(|▽u|p-2▽u) + f(▽u, u, x, t). J Math Anal Appl, 1993, 172 (1): 130- 146 |
| 5 | Yin J X , Jin C H . Critical extinction and blow-up exponents for fast diffusive p-Laplacian with sources. Math Meth Appl Sci, 2007, 30 (10): 1147- 1167 |
| 6 | Fang Z B , Xu X H . Extinction behavior of solutions for the p-Laplacian equations with nonlocal sources. Nonlinear Anal Real World Appl, 2012, 13 (4): 1780- 1789 |
| 7 | Yamashita Y , Yokota T . Existence of solutions to some degenerate parabolic equation associated with the p-Laplacian in the critical case. Nonlinear Anal, 2013, 93: 168- 180 |
| 8 | Qu C Y , Bai X L , Zheng S N . Blow-up versus extinction in a nonlocal p-Laplace equation with Neumann boundary conditions. J Math Anal Appl, 2014, 412 (1): 326- 333 |
| 9 | Levine H A . Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics:The method of unbounded Fourier coefficients. Math Ann, 1975, 214: 205- 220 |
| 10 | Levine H A . The role of critical exponents in blow-up theorems. SIAM Rev, 1990, 32 (2): 262- 288 |
| 11 | Bandle C , Brunner H . Blow-up in diffusion equations:A survey. J Comput Appl Math, 1998, 97 (1/2): 3- 22 |
| 12 | Straughan B . Explosive Instabilities in Mechanics. Berlin: Springer-Verlag, 1998 |
| 13 | Payne L E , Schaefer P W . Lower bounds for blow-up time in parabolic problems under Dirichlet conditions. J Math Anal Appl, 2007, 328 (2): 1196- 1205 |
| 14 | Payne L E , Schaefer P W . Lower bounds for blow-up time in parabolic problems under Neumann conditions. Appl Anal, 2006, 85 (10): 1301- 1311 |
| 15 | Payne L E , Schaefer P W . Blow-up in parabolic problems under Robin boundary conditions. Appl Anal, 2008, 87 (6): 699- 707 |
| 16 | Payne L E , Philippin G A , Schaefer P W . Bounds for blow-up time in nonlinear parabolic problems. J Math Anal Appl, 2008, 338 (1): 438- 447 |
| 17 | Payne L E , Philippin G A , Schaefer P W . Blow-up phenomena for some nonlinear parabolic problems. Nonlinear Anal, 2008, 69 (10): 3495- 3502 |
| 18 | Li Y F , Liu Y , Lin C H . Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions. Nonlinear Anal Real World Appl, 2010, 11 (15): 3815- 3823 |
| 19 | Mu C L , Zeng R , Chen B T . Blow-up phenomena for a doubly degenerate equation with positive initial energy. Nonlinear Anal, 2010, 72 (2): 782- 793 |
| 20 | Enache C . Blow-up phenomena for a class of quasilinear parabolic problems under Robin boundary condition. Appl Math Lett, 2011, 24 (3): 288- 292 |
| 21 | Li F S , Li J L . Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions. J Math Anal Appl, 2012, 385 (2): 1005- 1014 |
| 22 | Wang N , Song X F , Lv X S . Estimates for the blowup time of a combustion model with nonlocal heat sources. J Math Anal Appl, 2016, 436 (2): 1180- 1195 |
| 23 | Di H F , Shang Y D , Peng X M . Blow-up phenomena for a pseudo-parabolic equation with variable exponents. Appl Math Lett, 2017, 64: 67- 73 |
| 24 | Ding J T , Shen X H . Blow-up in p-Laplacian heat equations with nonlinear boundary conditions. Z Angew Math Phys, 2016, 67 (3): 125 |
| 25 | Ma L W , Fang Z B . Bolw-up analysis for a reaction-diffusion with weighted nonlocal inner absorptions under nonlinear boundary flux. Nonlinear Anal Real World Appl, 2016, 32: 338- 354 |
| 26 | Payne L E , Song J C . Lower bounds for blow-up time in a nonlinear parabolic problem. J Math Anal Appl, 2009, 354 (1): 394- 396 |
| 27 | Song J C . Lower bounds for the blow-up time in a non-local reaction-diffusion problem. Appl Math Lett, 2011, 24 (5): 793- 796 |
| 28 | Liu D M , Mu C L , Xin Q . Lower bounds estimate for the blow-up time of a nonlinear nonlocal porous medium equation. Acta Math Sci, 2012, 32 (3): 1206- 1212 |
| 29 | Liu Y . Blow-up phenomena for the nonlinear nonlocal porous medium equation under Robin bondary condition. Comput Math Appl, 2013, 66 (10): 2092- 2095 |
| 30 | Talenti G . Best constant in Sobolev inequality. Ann Mat Pura Appl, 1976, 110: 353- 372 |
| 31 | Daners D . A Faber-Krahn inequality for Robin problems in any space dimension. Math Ann, 2006, 335 (4): 767- 785 |
| 32 | Payne L E , Philippin G A , Vernier Piro S . Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, Ⅱ. Nonlinear Anal, 2010, 73 (4): 971- 978 |