| 1 | Sun W , Yuan Y X . Optimization Theory and Methods. New York: Springer, 2006: 175- 200 | | 2 | Vrahatis M N , Androulakis G S , Lambrinos J N , et al. A class of gradient unconstrained minimization algorithms with adaptive stepsize. Journal of Computational and Applied Mathematics, 2000, 114 (2): 367- 386 | | 3 | Shi Z J , Guo J . A new family of conjugate gradient methods. Journal of Computational & Applied Mathematics, 2009, 224 (1): 444- 457 | | 4 | Yuan G , Wei Z , Li G . A modified Polak-Ribière-Polyak conjugate gradient algorithm for nonsmooth convex programs. Journal of Computational and Applied Mathematics, 2014, 255: 86- 96 | | 5 | Jiang X Z , Jian J B . Two modified nonlinear conjugate gradient methods with disturbance factors for unconstrained optimization. Nonlinear Dynamics, 2014, 77 (1/2): 387- 397 | | 6 | Yuan G , Wei Z , Zhao Q . A modified Polak-Ribière-Polyak conjugate gradient algorithm for large-scale optimization problems. ⅡE Transactions, 2014, 46 (4): 397- 413 | | 7 | Itoh S , Sugihara M . Formulation of a preconditioned algorithm for the conjugate gradient squared method in accordance with its logical structure. Applied Mathematics, 2015, 06 (8): 1389- 1406 | | 8 | Yuan G , Zhang M . A three-terms Polak-Ribière-Polyak conjugate gradient algorithm for large-scale nonlinear equations. Journal of Computational and Applied Mathematics, 2015, 286 (3): 186- 195 | | 9 | Yuan G , Meng Z , Li Y . A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations. Journal of Optimization Theory and Applications, 2016, 168 (1): 129- 152 | | 10 | 胡朝明, 万中, 王旭. 一种新的非单调谱共轭梯度算法. 数学物理学报, 2013, 33A (1): 78- 88 | | 10 | Hu C M , Wan Z , Wang X . A new nonmonotone spectral conjugate gradient algorithm. Acta Math Sci, 2013, 33A (1): 78- 88 | | 11 | Chen Q , Jiang X Z . A spectral conjugate gradient method for unconstrained optimization. Applied Mathematics and Optimization, 2001, 43 (2): 117- 128 | | 12 | Zhang B , Zhu Z , Li S . A modified spectral conjugate gradient projection algorithm for total variation image restoration. Applied Mathematics Letters, 2014, 27 (1): 26- 35 | | 13 | 李董辉, 童小娇, 万中. 数值最优化算法与理论. 北京: 科学出版社, 2011: 71- 87 | | 13 | Li D H , Tong X J , Wan Z . Numerical Optimization Algorithms and Theory. Beijing: Science Press, 2011: 71- 87 | | 14 | Gao H , Zhang H B , Li Z B , et al. A nonmonotone inexact Newton method for unconstrained optimization. Optimization Letters, 2017, 11 (5): 947- 965 | | 15 | Dai Y H . Convergence properties of the BFGS algoritm. Siam Journal on Optimization, 2002, 13 (3): 693- 701 | | 16 | Zhang H , Ni Q . A new regularized quasi-Newton algorithm for unconstrained optimization. Applied Mathematics and Computation, 2015, 259: 460- 469 | | 17 | 沈洁, 郭方芳, 庞丽萍. 非光滑凸规划不可行拟牛顿束方法的收敛性分析. 数学进展, 2016, 46 (2): 299- 308 | | 17 | Shen J , Guo F F , Pang L P . Convergence analysis of an infeasible quasi-Newton bundle method for nonsmooth convex programming. Advances in Mathematics, 2016, 46 (2): 299- 308 | | 18 | Polyak B T . The conjugate gradient method in extremal problems. Ussr Computational Mathematics and Mathematical Physics, 1969, 9 (4): 94- 112 | | 19 | Cardenas S . Efficient generalized conjugate gradient algorithms. Ⅰ. Theory Journal of Optimization Theory and Applications, 1991, 69 (1): 129- 137 | | 20 | Hestenes M R , Stiefel E . Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 1952, 49 (6): 409- 436 | | 21 | 万中, 冯冬冬. 一类非单调保守BFGS算法研究. 计算数学, 2011, 33 (4): 387- 396 | | 21 | Wan Z , Fen D D . Investigation on a class of nonmonotone cautious BFGS algorithms. Mathematica Numerica Sinica, 2011, 33 (4): 387- 396 | | 22 | Ahookhosh M , Amini K , Bahrami S . A class of nonmonotone Armijo-type line search method for unconstrained optimization. Optimization, 2012, 61 (4): 387- 404 | | 23 | Lee D D , Seung H S . Learning the parts of objects by non-negative matrix factorization. Nature, 1999, 401: 788- 791 | | 24 | Liu H , Li X . Modified subspace Barzilai-Borwein gradient method for non-negative matrix factorization. Computational Optimization and Applications, 2013, 55 (1): 173- 196 | | 25 | Paatero P , Tapper U . Positive matrix factorization:A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 1994, 5 (5): 111- 126 | | 26 | Cichocki A , Zdunek R , Phan A H , et al. Nonnegative matrix and tensor factorizations:applications to exploratory multi-way data analysis and Blind Source separation. Wiley Publishing, 2009, 25 (2): 1- 3 |
|