| 1 | Berkani M , Koliha J J . Weyl type theorems for bounded linear operators. Acta Sci Math (Szeged), 2003, 69: 359- 376 | | 2 | Harte R , Lee W Y . Another note on Weyl's theorem. Trans Amer Math Soc, 1997, 349: 2115- 2124 | | 3 | Rako?evi? V . On a class of operators. Math Vesnik, 1985, 37: 423- 426 | | 4 | Rako?evi? V . Operators obeying a-Weyl's theorem. Rev Roumaine Math Pures Appl, 1989, 34: 915- 919 | | 5 | Aiena P . Classes of operators satisfying a-Weyl's theorem. Studia Math, 2005, 169: 105- 122 | | 6 | Berkani M , Zariouh H . Perturbation results for Weyl type theorems. Acta Math Univ Comenianae, 2011, 80: 119- 132 | | 7 | Aiena P . Fredholm and Local Spectral Theory with Applications to Multipliers. Dordrecht: Kluwer Acad Publishers, 2004 | | 8 | 李玉丹, 吴德玉, 阿拉坦仓. 无穷维Hamilton算子的本质谱. 数学物理学报, 2018, 38A: 476- 483 | | 8 | Li Y D , Wu D Y , Alatancang . The essential spectra of infinite dimensional Hamilton operator. Acta Math Sci, 2018, 38A: 476- 483 | | 9 | Coburn L A . Weyl's theorem for nonnormal operators. Michigan Math J, 1966, 13: 285- 288 | | 10 | Dunford N . Spectral theory Ⅰ. Resolution of the identity. Pacific J Math, 1952, 2: 559- 614 | | 11 | Laursen K B , Neumann M M . Introduction to Local Spectral Theory. Oxford: Clarendon Press, 2000 | | 12 | Djordjevi? D S . Operators obeying a-Weyl's theorem. Publ Math Debrecen, 1999, 55: 283- 298 | | 13 | Berkani M , Zariouh H . Generalized a-Weyl's theorem and perturbations. Journal Functional Analysis, Approximation and Computation, 2010, 2: 7- 18 | | 14 | Mbekhta M , Müller V . On the axiomatic theory of spectrum Ⅱ. Studia Math, 1996, 119: 129- 147 | | 15 | Zeng Qingping , Jiang Qiaofen , Zhong Huaijie . Spectra originated from semi-B-Fredholm theory and commuting perturbations. Studia Math, 2013, 219: 1- 18 | | 16 | Oudghiri M . Weyl's and Browder's theorem for operators satisfying the SVEP. Studia Math, 2004, 163: 85- 101 | | 17 | Aiena P , Villafa?e F . Weyl's theorem for some classes of operators. Integral Equations Operator Theory, 2005, 53: 453- 466 | | 18 | Lin C , Ruan Y , Yan Z . p-hyponormal operators are subscalar. Proc Amer Math Soc, 2003, 131: 2753- 2759 | | 19 | Chō M , Itoh M , ōshiro S . Weyl's theorems holds for p-hyponormal operators. Glasgow Math J, 1997, 39: 217- 220 | | 20 | Han Y M , Kim A H . A note on *-paranormal operators. Integral Equations Operator Theory, 2004, 49: 435- 444 | | 21 | Aiena P , Colasante M L , Gonzalez M . Operators which have a closed quasinilpotent part. Proc Amer Math Soc, 2002, 130: 2701- 2710 | | 22 | Curto R E , Han Y M . Weyl's theorem, a-Weyl's theorem and local spectral theory. J London Math Soc, 2003, 67: 499- 509 | | 23 | Putinar M . Quasi-similarity of tuples with Bishop's property (β). Integral Equations Operator Theory, 1992, 15: 1047- 1052 | | 24 | Djordjevi? S V , Jeon I H , Ko E . Weyl's theorem through local spectral theory. Glasgow Math J, 2002, 44: 323- 327 |
|