数学物理学报 ›› 2020, Vol. 40 ›› Issue (1): 187-199.
收稿日期:
2018-10-11
出版日期:
2020-02-26
发布日期:
2020-04-08
通讯作者:
魏含玉
E-mail:weihanyu8207@163.com
基金资助:
Hanyu Wei1,*(),Tiecheng Xia2,Beibei Hu3,Yan Zhang1
Received:
2018-10-11
Online:
2020-02-26
Published:
2020-04-08
Contact:
Hanyu Wei
E-mail:weihanyu8207@163.com
Supported by:
摘要:
该文利用Lie超代数B(0,1)导出一个新的广义超孤子族,借助超迹恒等式将广义超孤子族写成超双-Hamilton结构形式.其次,建立了广义超孤子族的自相容源.最后,给出了广义超孤子族的无穷守恒律.
中图分类号:
魏含玉,夏铁成,胡贝贝,张燕. 一个新的可积广义超孤子族及其自相容源、守恒律[J]. 数学物理学报, 2020, 40(1): 187-199.
Hanyu Wei,Tiecheng Xia,Beibei Hu,Yan Zhang. A New Integrable Generalization of Super Soliton Hierarchy and Its Self-Consistent Sources and Conservation Laws[J]. Acta mathematica scientia,Series A, 2020, 40(1): 187-199.
1 |
Chowdhury A R , Roy S . On the Bäcklund transformation and Hamiltonian properties of superevaluation equations. J Math Phys, 1986, 27 (10): 2464- 2468
doi: 10.1063/1.527309 |
2 |
Hu X B . An approach to generate superextensions of integrable systems. J Phys A: Math Gen, 1997, 30 (2): 619- 632
doi: 10.1088/0305-4470/30/2/023 |
3 |
Ma W X , He J S , Qin Z Y . A supertrace identity and its applications to superintegrable systems. J Math Phys, 2008, 49 (3): 033511
doi: 10.1063/1.2897036 |
4 | Ma W X. Nonlinear and Modern Mathematical Physics. New York: AIP Conference Proceedings, 2010 |
5 | Yu F J , Feng L L , Li L . Darboux transformations for super-Schrödinger equation, super-Dirac equation and their exact solutions. Nonlinear Dynam, 2017, 88 (2): 1257- 1271 |
6 | Yu F J , Li L . A new matrix Lie algebra, the multicomponent Yang hierarchy and its super-integrable coupling system. Appl Math Comput, 2009, 207 (2): 380- 387 |
7 |
Zhang Y F , Tam H W , Mei J Q . Some 2+1 dimensional super-integrable systems. Z Naturforsch, 2015, 70 (10): 791- 796
doi: 10.1515/zna-2015-0213 |
8 |
Tao S X , Xia T C . Lie algebra and Lie super algebra for integrable couplings of C-KdV hierarchy. Chin Phys Lett, 2010, 27 (4): 040202
doi: 10.1088/0256-307X/27/4/040202 |
9 |
Tao S X , Xia T C . Two super-integrable hierarchies and their super-Hamiltonian structures. Commun Nonlinear Sci Numer Simulat, 2011, 16 (1): 127- 132
doi: 10.1016/j.cnsns.2010.04.009 |
10 |
Yu J , Han W , He J S . Binary nonlinearization of the super AKNS system under an implicit symmetry constraint. J Phys A: Math Theor, 2009, 42 (46): 465201
doi: 10.1088/1751-8113/42/46/465201 |
11 | Meŕnikov V K . Integration of the nonlinear Schrodinger equation with a source. Inverse Probl, 1992, 8 (1): 133- 147 |
12 |
Ma W X , Strampp W . An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems. Phys Lett A, 1994, 185 (3): 277- 286
doi: 10.1016/0375-9601(94)90616-5 |
13 |
Yu F J , Li L . Integrable coupling system of JM equations hierarchy with self-consistent sources. Commun Theor Phys, 2010, 53 (1): 6- 12
doi: 10.1088/0253-6102/53/1/02 |
14 |
Yu F J . An integrable couplings of G-WKI equations hierarchy with self-consistent sources. Comput Math Appl, 2011, 61 (8): 2085- 2089
doi: 10.1016/j.camwa.2010.08.079 |
15 | 魏含玉, 夏铁成. 超Guo族的自相容源和守恒律. 数学物理学报, 2013, 33A (6): 1133- 1141 |
Wei H Y , Xia T C . Conservation laws and self-consistent sources for a super-Guo equation hierarchy. Acta Math Sci (Ser A), 2013, 33A (6): 1133- 1141 | |
16 |
Wang H , Xia T C . Super Jaulent-Miodek hierarchy and its super Hamiltonian structure, conservation laws and its self-consistent sources. Front Math China, 2014, 9 (6): 1367- 1379
doi: 10.1007/s11464-014-0419-x |
17 |
Yu J , Ma W X , Han J W , Chen S T . An integrable generalization of the super AKNS hierarchy and its bi-Hamiltonian formulation. Commun Nonlinear Sci Numer Simulat, 2017, 43, 151- 157
doi: 10.1016/j.cnsns.2016.06.033 |
18 |
Miura R M , Gardner C S , Kruskal M D . Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J Math Phys, 9 (8): 1204- 1209
doi: 10.1063/1.1664701 |
19 |
Wadati M , Sanuki H , Konno K . Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws. Progr Theoret Phys, 1975, 53 (2): 419- 436
doi: 10.1143/PTP.53.419 |
20 | Ibragimov N H , Kolsrud T . Lagrangian approach to evolution equations: symmetries and conservation laws. Nonlinear Dyn, 2004, 36 (1): 29- 40 |
21 | Yang J J , Ma W X . Conservation laws of a perturbed Kaup-Newell equation. Mod Phys Lett B, 2016, 30 (32): 1650381 |
22 | Geng X G , Ma W X . A generalized Kaup-Newell spectral problem, soliton equations and finite-dimensional integrable systems. Il Nuovo Cimento A, 1995, 108 (4): 1965- 1970 |
23 |
Li Z , Dong H H , Yang H W . A super-soliton hierarchy and its super-Hamiltonian structure. Int J Theor Phys, 2009, 48 (7): 2172- 2176
doi: 10.1007/s10773-009-9995-z |
24 | Tu G Z . An extension of a theorem on gradients of conserved densities of integrable systems. Northeastern Math J, 1990, 6 (1): 28- 32 |
25 |
He J S , Yu J , Zhou R G . Binary nonlinearization of the super AKNS system. Mod Phys Lett B, 2008, 22 (4): 275- 288
doi: 10.1142/S0217984908014778 |
26 |
Tao S X , Wang H , Shi H . Binary nonlinearization of the super classical-Boussinesq hierarchy. Chin Phys B, 2011, 20 (7): 070201
doi: 10.1088/1674-1056/20/7/070201 |
27 |
Yu F J . Dynamics of nonautonomous discrete rogue wave solutions for an Ablowitz-Musslimani equation with PT-symmetric potential. Chaos, 2017, 27 (2): 023108
doi: 10.1063/1.4975763 |
28 |
Ma W X , Yong X L , Zhang H Q . Diversity of interaction solutions to the (2+1)-dimensional Ito equation. Comput Math Appl, 2018, 75 (1): 289- 295
doi: 10.1016/j.camwa.2017.09.013 |
29 |
Ma W X , Zhou Y . Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J Differ Equ, 264 (4): 2633- 2659
doi: 10.1016/j.jde.2017.10.033 |
30 | Ma W X , Li J , Khalique C M . A study on lump solutions to a generalized Hirota-Satsuma-Ito equation in (2+1)-dimensions. Complexity, 2018, 2018, 9059858 |
31 |
Chen S T , Ma W X . Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation. Comput Math Appl, 2018, 76 (7): 1680- 1685
doi: 10.1016/j.camwa.2018.07.019 |
32 |
Ma W X . Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs. J Geom Phys, 2018, 133, 10- 16
doi: 10.1016/j.geomphys.2018.07.003 |
33 |
Yang J J , Ma W X , Qin Z Y . Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation. Anal Math Phys, 2018, 8 (3): 427- 436
doi: 10.1007/s13324-017-0181-9 |
34 |
Ma W X . Lump and interaction solutions of linear PDEs in (3+1)-dimensions. E Asian J Appl Math, 2019, 9 (1): 185- 194
doi: 10.4208/eajam.100218.300318 |
35 | 魏含玉, 夏铁成. 广义Broer-Kaup-Kupershmidt孤子方程的拟周期解. 数学物理学报, 2016, 36A (2): 317- 327 |
Wei H Y , Xia T C . Quasi-periodic solution of the generalized Broer-Kaup-Kupershmidt soliton equation. Acta Math Sci (Ser A), 2016, 36A (2): 317- 327 | |
36 |
孙玉娟, 丁琦, 梅建琴, 张鸿庆. D-AKNS方程的代数几何解. 数学物理学报, 2013, 33A (2): 276- 284
doi: 10.3969/j.issn.1003-3998.2013.02.011 |
Sun Y J , Ding Q , Mei J Q , Zhang H Q . Algebro-Geometric solutions of the D-AKNS equations. Acta Math Sci (Ser A), 2013, 33A (2): 276- 284
doi: 10.3969/j.issn.1003-3998.2013.02.011 |
[1] | 何国亮,郑真真,徐涛. 形变Boussinesq型方程族及其守恒律和Darboux变换[J]. 数学物理学报, 2020, 40(5): 1305-1318. |
[2] | 方芳,胡贝贝,张玲. 超广义Burgers方程族的非线性可积耦合及其Bargmann对称约束[J]. 数学物理学报, 2020, 40(3): 694-704. |
[3] | 郝晓红,程智龙. 一类广义浅水波KdV方程的可积性研究[J]. 数学物理学报, 2019, 39(3): 451-460. |
[4] | 刘晶鑫, 吴红霞, 曾云波. 无色散BKP方程族可积耦合推广及其求解[J]. 数学物理学报, 2017, 37(2): 313-325. |
[5] | 夏冬, 夏铁成, 李德生. 分数阶超Yang族及其超哈密顿结构[J]. 数学物理学报, 2015, 35(2): 373-380. |
[6] | 魏含玉, 夏铁成. 超Guo 族的自相容源和守恒律[J]. 数学物理学报, 2013, 33(6): 1133-1141. |
[7] | 魏含玉, 夏铁成, 岳超. 超 Broer-Kaup-Kupershmidt 族的非线性可积耦合及其哈密尔顿结构[J]. 数学物理学报, 2013, 33(4): 686-695. |
[8] | 夏铁成, 张登朋, 特木尔朝鲁. 带有自相容源的屠族新可积耦合[J]. 数学物理学报, 2012, 32(5): 941-949. |
[9] | 汪兵;徐学文. 具有退化粘性的非齐次双曲守恒律方程的Cauchy问题[J]. 数学物理学报, 2008, 28(1): 109-115. |
[10] | 杨小舟. 非线性变换和守恒律方程的非自相似解[J]. 数学物理学报, 2005, 25(4): 584-592. |
[11] | 曾云波. 带附加项的AKNS方程族的Darboux变换[J]. 数学物理学报, 1995, 15(3): 337-345. |
[12] | 罗绍凯. 变质量高阶非Четаев型非完整约束系统动力学[J]. 数学物理学报, 1994, 14(2): 168-177. |
[13] | 郭柏灵, 陈登远. 广义Heisenberg方程的无穷守恒律[J]. 数学物理学报, 1993, 13(3): 298-302. |
|