| 1 | Fakhi S . Positive solutions of △u + up=0 whose singular set is a manifold with boundary. Calc Var Partial Differential Equations, 2003, 17 (2): 179- 197 |
| 2 | Evans L C. Partial Differential Equations. 2ed. Providence, RI: American Mathematical Society, 2010 |
| 3 | Schaeffer J . The equation utt-△u=|u|p for the critical value of p. Proc Roy Soc Edinb, 1985, 101 |
| 4 | Yuan H J . The Cauchy problem for a singular conservation law with measures as initial conditions. J Math Anal Appl, 1998, 225 (2): 427- 439 |
| 5 | Galaktionov V A , Mitidieri E , Pohozaev S I . Classification of global and blow-up sign-changing solutions of a semilinear heat equation in the subcritical Fujita Range:decond-order diffusion. Adv Nonlinear Stud, 2016, 14 (01): 1- 29 |
| 6 | Al-Ghafri K S . Soliton-type solutions for two models in mathematical physics. Waves in Random and Complex Media, 2018, 28 (2): 261- 269 |
| 7 | Aoki K , Inui T , Mizutani H . Failure of scattering to standing waves for a Schr?dinger equation with long-range nonlinearity on star graph. J Evol Equ, 2020 |
| 8 | Kobayasi K . Uniqueness of solutions of degenerate diffusion equations with measures as initial conditions. Nonlinear Anal, 1988, 12 (10): 1053- 1060 |
| 9 | Liu W X . Singular solutions for a convection diffusion equation with absorption. J Math Anal Appl, 1992, 163 (1): 200- 219 |
| 10 | Phan Q H . Nonexistence results for a semilinear heat equation with bounded potentials. Nonlinear Anal, 2020, 192, 111667 |
| 11 | Osawa T . The Hadamard variational formula for the ground state value of -△u=λ|u|p-1u. Kodai Math J, 1992, 15 (2): 258- 278 |
| 12 | Adams D R . On pacard's regularity for the equation -△=up. Electron J Differential Equations, 2012, 2012 (125): 1- 6 |
| 13 | Villavert J . A refined approach for non-negative entire solutions of △u +|u|p-1 u=0 with subcritical Sobolev growth. Adv Nonlinear Stud, 2017, 17 (4): 691- 703 |
| 14 | Zou H H . Symmetry of positive solutions of △u + up=0 in Rn. J Differential Equations, 1995, 120 (1): 46- 88 |
| 15 | Ghergu M , Kim S H , Shahgholian H . Isolated singularities for semilinear elliptic systems with power-law nonlinearity. Analysis & PDE, 2020, 13 (3): 701- 739 |
| 16 | An Y C , Liu H R , Tian L . The Dirichlet problem for a sub-elliptic equation with singular nonlinearity on the Heisenberg group. J Math Inequal, 2020, 14 (1): 65- 80 |
| 17 | Kwon Y K , Sario L , Schiff J . Bounded energy-finite solutions of △u=Pu on a Riemannian manifold. Nagoya Math J, 1971, 42 (6): 95- 108 |
| 18 | Li M R . Blow-up results and asymptotic behavior of the emden-fowler equation u"=|u|p*. Acta Mathematica Scientia, 2007, 27B (4): 703- 734 |
| 19 | Labutin D A . Wiener regularity for large solutions of nonlinear equations. Arkiv f?r Matematik, 2003, 41, 307- 339 |
| 20 | Marcus M , Véron L . Maximal solutions of equation △u=uq in arbitrary domains. C R Acad Sci Paris Ser I Math, 2007, 344 (5): 299- 304 |
| 21 | Le-Gall J F . The Brownian snake and solutions of △u=u2 in a domain. Probab Theory Relat Fields, 1995, 102 (3): 393- 432 |
| 22 | Abraham R , Delmas J F . Solutions of △u=4u2 with Neumann's conditions using the Brownian snake. Probab Theory Relat Fields, 2004, 128 (4): 475- 516 |
| 23 | Quaas A , Topp E . Existence and uniqueness of large solutions for a class of non-uniformly elliptic semilinear equations. J d'Analyse Math, 2018, 136 (1): 341- 355 |
| 24 | Marcus M , Véron L . Maximal solutions for -△u + uq=0 in open or finely open sets. J Math Pure Appl, 2009, 91 (3): 256- 295 |
| 25 | Kirchhoff G R. Vorlesungen über Matematische Physik: Mechanik. Leipzig: Druck und von B G Teubner, 1876 |
| 26 | Anello G . A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problem. J Math Anal Appl, 2011, 373 (1): 248- 251 |
| 27 | Liu J , Liao J F , Tang C L . . J Math Anal Appl, 2015, 429 (2): 1153- 1172 |
| 28 | Yao X Z , Mu C L . Infinitely many sign-changing solutions for Kirchhoff-type equations with power nonlinearity. Electron J Differential Equations, 2016, 2016 (59): 1- 9 |
| 29 | Sun Z H , Lei Y F . Infinitely many sign-changing solutions to Kirchhoff-type equations. Anal Math Phys, 2019, 9 (1): 565- 584 |
| 30 | Yin G S , Liu J S . Existence and multiplicity of nontrivial solutions for a nonlocal problem. Bound Value Probl, 2015, 2015 (26): 1- 7 |
| 31 | Lei C Y , Chu C M , Suo H M . Positive solutions for a nonlocal problem with singularity. Electron J Differential Equations, 2017, 2017 (85): 1- 9 |
| 32 | Wang Y , Suo H M , Lei C Y . Multiple positive solutions for a nonlocal problem involving critical exponent. Electron J Differential Equations, 2017, 2017 (275): 1- 11 |
| 33 | Hamdani M K , Harrabi A , Mtiri F , et al. Existence and multiplicity results for a new p(x)-Kirchhoff problem. Nonlinear Anal, 2020, 190, 111598 |
| 34 | Wang Y, Yang X. Infinitely many solutions for a new Kirchhoff type equation with subcritical exponent. Applicable Analysis, 2020, Article ID: 1767288 |
| 35 | Li G B , Xiang C L . Nondegeneracy of positive solutions to a Kirchhoff problem with critical Sobolev growth. Appl Math Lett, 2018, 86, 270- 275 |
| 36 | Faraci F , Farkas C . On a critical Kirchhoff-type problem. Nonlinear Anal, 2020, 192, 111679 |
| 37 | Talenti G (Firenze) . Best constant in Sobolev inequality. Annali Di Matematica Pura Ed Applicata, 1976, 110 (01): 353- 372 |
| 38 | Willem M. Minimax Theorems. Boston: Birkh?user Boston Inc, 1996 |
| 39 | Boccardo L , Orsina L . Semilinear elliptic equations with singular nonlinearities. Calc Var Partial Differential Equations, 2010, 37, 363- 380 |
| 40 | Sun Y J , Zhang D Z . The role of the power 3 for elliptic equations with negative exponents. Calc Var Partial Differential Equations, 2014, 49, 909- 922 |