| 1 | Naheed A , Singh M , Lucy D . Numerical study of SARS epidemic model with the inclusion of diffusion in the system. Appl Math Comput, 2014, 229, 480- 498 | | 2 | Beauchemin C A A , Handel A . A review of mathematical models of influenza a infections within a host or cell culture: lessons learned and challenges ahead. BMC Public Health, 2011, 11 (Suppl 1): S7 | | 3 | 韩祥临, 汪维刚, 莫嘉琪. 流行性病毒传播生态动力学系统. 数学物理学报, 2019, 39A (1): 200- 208 | | 3 | Han X L , Wang W G , Mo J Q . Bionomics dynamic system for epidemic virus transmission. Acta Math Sci, 2019, 39A (1): 200- 208 | | 4 | 唐三一, 唐彪, BragazziN L, 等. 新型冠状病毒肺炎疫情数据挖掘与离散随机传播动力学模型分析. 中国科学: 数学, 2020, 50 (8): 1071- 1086 | | 4 | Tang S Y , Tang B , Bragazzi N L , et al. Analysis of COVID-19 epidemic traced data and stochastic discrete transmission dynamic model. Sci Sin Math, 2020, 50 (8): 1071- 1086 | | 5 | 程欣欣, 饶亚情, 黄刚. 封闭空间中新型冠状病毒肺炎传播模型: 以日本"钻石公主号"邮轮为例. 数学物理学报, 2020, 40A (2): 540- 544 | | 5 | Cheng X X , Rao Y Q , Huang G . COVID-19 transmission model in an enclosed space: a case study of Japan Diamond Princess Cruises. Acta Math Sci, 2020, 40A (2): 540- 544 | | 6 | Gilchrist M A , Sasaki A . Modeling host-parasite coevolution: a nested approach based on mechanistic models. J Theor Biol, 2002, 218 (3): 289- 308 | | 7 | Mohtashemi M , Levins R . Transient dynamics and early diagnostics in infectious disease. J Math Biol, 2001, 43 (5): 446- 470 | | 8 | Pugliese A , Gandolfi A . A simple model of pathogen-immune dynamics including specific and non-specific immunity. Math Biosci, 2008, 214 (1): 73- 80 | | 9 | Wang W , Ma W . Hepatitis C virus infection is blocked by HMGB1: a new nonlocal and time-delayed reaction-diffusion model. Appl Math Comput, 2018, 320, 633- 653 | | 10 | Stancevic O , Angstmann C N , Murray J M , et al. Turing patterns from dynamics of early HIV infection. B Math Biol, 2013, 75 (5): 774- 795 | | 11 | Lee M R , Huang Y T , Lee P I , et al. Healthcare-associated bacteraemia caused by Leuconostoc species at a university hospital in Taiwan between 1995 and 2008. J Hosp Infect, 2011, 78 (1): 45- 49 | | 12 | 崔青曼, 袁春营, 李春岭, 等. 主要海水养殖鱼类白点病和盾纤毛虫病防治技术. 水利渔业, 2007, 27 (6): 85- 87 | | 12 | Cui Q M , Yuan C Y , Li C L , et al. Control of white - spot disease and scuticociliatida disease of some main cultured sea fishes. Reservoir Fisheries, 2007, 27 (6): 85- 87 | | 13 | 孙汶生. 医学免疫学. 北京: 高等教出版社, 2010 | | 13 | Sun W S . Medical Immunology. Bei Jing: Higher Education Press, 2010 | | 14 | Han X L , Jin Z . A dynamic model of hepatitis B virus with delayed immune response. J North University of China, 2011, 32 (1): 197- 208 | | 15 | Bai Z , Peng R , Zhao X Q . A reaction-diffusion malaria model with seasonality and incubation period. J Math Biol, 2018, 77 (1): 201- 228 | | 16 | Zhu D D , Ren J L , Zhu H P . Spatial-temporal basic reproduction number and dynamics for a dengue disease diffusion model for a dengue disease diffusion model. Math Meth Appl Sci, 2018, 41, 5388- 5403 | | 17 | Yamazaki K . Threshold dynamics of reaction-diffusion partial differential equations model of Ebola virus disease. Int J Biomath, 2018, 11 (8): 1850108 | | 18 | Diggles B K , Lester R J G . Influence of temperature and host species on the development of cryptocaryon irritans. J Parasitol, 1996, 82 (1): 45- 51 | | 19 | Wang K , Wang W , Pang H , et al. Complex dynamic behavior in a viral model with delayed immune response. Physica D, 2007, 226 (2): 197- 208 | | 20 | Xie Q , Huang D , Zhang S , et al. Analysis of a viral infection model with delayed immune response. Appl Math Model, 2010, 34 (9): 2388- 2395 | | 21 | Niu B , Guo Y X , Du Y F . Hopf bifurcation induced by delay effect in a diffusive tumor-immune system. Int J Bifurcat Chaos, 2018, 28 (11): 1850136 | | 22 | Canabarro A A , Gléria I M , Lyra M L . Periodic solutions and chaos in a nonlinear model for the delayed cellular immune response. Physica A, 2004, 342 (1/2): 234- 241 | | 23 | Wu J H . Theory and Applications of Partial Functional Differential Equations. New York: Springer-Verlag, 1996 | | 24 | Jiang W , Wang H , Cao X . Turing instability and Turing-Hopf bifurcation in diffusive Schnakenberg systems with gene expression time delay. J Dynam Differential Equations, 2019, 31 (4): 2223- 2247 | | 25 | Wang W , Liu Q X , Jin Z . Spatiotemporal complexity of a ratio-dependent predator-prey system. Phys Rev E, 2007, 75 (5): 051913 | | 26 | Baurmann M , Gross T , Feudel U . Instabilities in spatially extended predator-prey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations. J Theor Biol, 2007, 245 (2): 220- 229 | | 27 | Song Y , Jiang H , Liu Q X , et al. Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation. SIAM J on Appl Dyn Syst, 2017, 16 (4): 2030- 2062 | | 28 | Garvie M R . Finite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB. B Math Biol, 2007, 69 (3): 931- 956 |
|