| 1 | Subhas K , Nieto J J . Mathematical modeling of tumor-immune competitive system, considering the role of time delay. Applied Mathematics and Computation, 2019, 340, 180- 205 | | 2 | Kirschner D , Panetta J C . Modeling immunotherapy of the tumor-immune interaction. Journal of Mathematical Biology, 1998, 37, 235- 252 | | 3 | Khajanchi S , Banerjee S . Stability and bifurcation analysis of delay induced tumor immune interaction model. Applied Mathematics and Computation, 2014, 248, 652- 671 | | 4 | Khajanchi S , Nieto J . Mathematical modeling of tumor-immune competitive system, considering the role of time delay. Applied Mathematics and Computation, 2019, 340, 180- 205 | | 5 | Letellier C , Denis F , Aguirre L A . What can be learned from chaotic cancer model?. Journal of Theoretical Biology, 2013, 322, 7- 16 | | 6 | Kuznetsov V A , Makalkin I A , Taylor M A , et al. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis. Bulletin of Mathematical Biology, 1994, 56, 295- 321 | | 7 | Robert D , Schreiber , Lloyd J , et al. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science, 2011, 331 (6024): 1565- 1570 | | 8 | Matthew D V , Michael H K , Robert D S , et al. Natural innate and adaptive immunity to cancer. Annual Review of Immunology, 2011, 29 (1): 235- 71 | | 9 | Araujo R P , McElwain D . A history of the study of solid tumour growth: The contribution of mathematical modelling. Bull Math Biol, 2004, 66, 1039- 1091 | | 10 | 黄佩, 蔺小林, 李建全, 等. 一类肿瘤-免疫系统动力学性态的全局分析. 高校应用数学学报A辑, 2019, 34 (2): 181- 189 | | 10 | Huang P , Lin X L , Li J Q , et al. Global analysis of a kind of tumor-immune system dynamics. Journal of Applied Mathematics Series A, 2019, 34 (2): 181- 189 | | 11 | 陶有山, 边保军. 抑制剂作用下肿瘤生长模型的参数识别. 数学物理学报, 2009, 29 (5): 1175- 1186 | | 11 | Tao Y S , Bian B J . Parameter identification of tumor growth model under the action of inhibitor. Acta Math Sci, 2009, 29 (5): 1175- 1186 | | 12 | 卫雪梅, 崔尚斌. 一个肿瘤生长自由边界问题解的渐近性态. 数学物理学报, 2007, 27 (4): 648- 659 | | 12 | Wei X M , Cui S B . The Asymptotic behavior of the solution of a tumor growth free boundary problem. Acta Math Sci, 2007, 27 (4): 648- 659 | | 13 | Adam J A , Bellomo N . A Survey of models for tumor-immune system dynamics. Modeling & Simulation in Science Engineering & Technology, 1996, 59 (5): 1023- 1024 | | 14 | 马知恩, 周义仓, 李承治. 常微分方程定性与稳定性方法. 北京: 科学出版社, 2015 | | 14 | Ma Z E , Zhou Y C , Li C Z . Qualitative and Stable Methods of Ordinary Differential Equations. Beijing: Science Press, 2015 | | 15 | Adams J F . Stable Homotopy and Generalised Homology. Chicago: University of Chicago Press, 1974 | | 16 | Kirschner D , Panetta J C . Modeling immunotherapy of the tumor-immune interaction. Journal of Mathematical Biology, 1998, 37 (3): 235- 252 | | 17 | Bodnar M , Piotrowska M J , Urszula Fory? , et al. Model of tumour angiogenesis-analysis of stability with respect to delays. Mathematical Bioences and Engineering, 2013, 10 (1): 19- 35 | | 18 | Pillis L D , Fister K R , Gu W , et al. Mathematical model creation for cancer chemo-immunotherapy. Computational and Mathematical Methods in Medicine, 2009, 10 (3): 165- 184 | | 19 | Chaplain M, Matzavinos A. Mathematical Modelling of Spatio-Temporal Phenomena in Tumour Immunology. Berlin: Springer, 2006 | | 20 | Galach M . Dynamics of the tumor-immune system competition: the effect of time delay. Applied Mathematics and Computer Science, 2003, 13, 395- 406 |
|