| 1 | Ambrosio V . Ground states solutions for a non-linear equation involving a pseudo-relativistic Schr?dinger operator. J Math Phys, 2016, 5: 051502 | | 2 | Cho Y , Lee S . Strichartz estimates in spherical coordinates. Indiana Univ Math J, 2013, 3: 991- 1020 | | 3 | Choi W , Seok J . Nonrelativistic limit of standing waves for pseudo-relativistic nonlinear Schr?dinger equations. J Math Phys, 2016, 2: 021510 | | 4 | Frank R L , Lenzmann E , Silvestre L . Uniqueness of radial solutions for the fractional Laplacian. Comm Pure Appl Math, 2016, 9: 1671- 1726 | | 5 | Fr?hlich J , Jonsson B L G , Lenzmann E . Boson stars as solitary waves. Comm Math Phys, 2007, 1: 1- 30 | | 6 | Fr?hlich J , Jonsson B L G , Lenzmann E . Effective dynamics for boson stars. Nonlinearity, 2007, 5: 1031- 1075 | | 7 | Fr?hlich J , Lenzmann E . Blowup for nonlinear wave equations describing boson stars. Comm Pure Appl Math, 2007, 11: 1691- 1705 | | 8 | Guo Y J , Zeng X Y , Zhou H S . Concentration behavior of standing waves for almost mass critical nonlinear Schr?dinger equations. J Differential Equations, 2014, 7: 2079- 2100 | | 9 | Guo Y J , Zeng X Y . Ground states of pseudo-relativistic boson stars under the critical stellar mass. Ann Inst H Poincaré Anal Non Linéaire, 2017, 6: 1611- 1632 | | 10 | Guo Y J , Zeng X Y . The Lieb-Yau conjecture for ground states of pseudo-relativistic Boson stars. J Funct Anal, 2020, 12: 108510 | | 11 | Lenzmann E . Well-posedness for semi-relativistic Hartree equations of critical type. Math Phys Anal Geom, 2007, 1: 43- 64 | | 12 | Lenzmann E . Uniqueness of ground states for pseudorelativistic Hartree equations. Anal PDE, 2009, 1: 1- 27 | | 13 | Lenzmann E , Lewin M . On singularity formation for the L2-critical Boson star equation. Nonlinearity, 2011, 24: 3515- 3540 | | 14 | Lieb E H , Yau H T . The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Comm Math Phys, 1987, 1: 147- 174 | | 15 | Yang J F , Yang J G . Existence and mass concentration of pseudo-relativistic Hartree equation. J Math Phy, 2017, 58: 081501 | | 16 | Zeng X Y , Zhang Y M . Existence and asymptotic behavior for the ground state of quasilinear elliptic equations. Adv Nonlinear Stud, 2018, 4: 725- 744 |
|