数学物理学报 ›› 2022, Vol. 42 ›› Issue (1): 269-281.
收稿日期:
2020-01-11
出版日期:
2022-02-26
发布日期:
2022-02-23
通讯作者:
龙兵
E-mail:qh-longbing@163.com
基金资助:
Bing Long1,*(),Zhongzhan Zhang2
Received:
2020-01-11
Online:
2022-02-26
Published:
2022-02-23
Contact:
Bing Long
E-mail:qh-longbing@163.com
Supported by:
摘要:
在传统的定时和定数截尾试验的基础上,该文首次提出了一种新的截尾试验方案:双定数混合截尾.基于这类截尾数据求出了两参数Pareto分布参数的极大似然估计及θ的置信区间.当α已知时,取Gamma先验分布的情况下,求出了三种不同损失函数下参数θ、可靠度函数以及失效率函数的Bayes估计;当α,θ都未知时,分别取无信息先验分布和指数先验分布,在平方损失函数下分别计算出α,θ、可靠度函数以及失效率函数的Bayes估计.利用Monte-Carlo方法模拟出双定数混合截尾样本,进而得到了两参数Pareto分布的参数及可靠性指标的估计,计算出相对误差并把各种估计的精度进行了比较.最后对一个数值例子进行了分析.
中图分类号:
龙兵,张忠占. 双定数混合截尾下两参数Pareto分布的统计分析[J]. 数学物理学报, 2022, 42(1): 269-281.
Bing Long,Zhongzhan Zhang. Statistical Analysis of Two-Parameter Pareto Distribution Under Double Type-Ⅱ Hybrid Censoring Scheme[J]. Acta mathematica scientia,Series A, 2022, 42(1): 269-281.
表 1
α已知时, θ的估计"
n | (α, θ) | m1 | m2 | t0 | ||||
20 | (6, 2) | 9 | 12 | 8 | 2.1378 | 2.0942 | 1.9327 | 1.9298 |
(0.2663) | (0.2178) | (0.2021) | (0.2188) | |||||
(7, 3) | 11 | 16 | 9 | 3.1269 | 2.8987 | 2.6540 | 2.7132 | |
(0.2270) | (0.1880) | (0.1951) | (0.2026) | |||||
30 | (6, 2) | 13 | 18 | 8 | 2.0730 | 2.0559 | 1.9437 | 1.9417 |
(0.2170) | (0.1903) | (0.1816) | (0.1922) | |||||
(7, 3) | 16 | 23 | 9 | 3.0643 | 2.9136 | 2.7320 | 2.7799 | |
(0.1851) | (0.1640) | (0.1696) | (0.1742) | |||||
50 | (6, 2) | 22 | 30 | 8 | 2.0394 | 2.0342 | 1.9634 | 1.9623 |
(0.1612) | (0.1492) | (0.1473) | (0.1527) | |||||
(7, 3) | 26 | 39 | 9 | 3.0282 | 2.9415 | 2.8256 | 2.8588 | |
(0.1465) | (0.1366) | (0.1393) | (0.1418) |
表 2
α已知时, 可靠度函数R(x)的估计(x=8)"
n | (α, θ) | m1 | m2 | t0 | ||||
20 | (6, 2) | 9 | 12 | 8 | 0.5505 | 0.5614 | 0.5481 | 0.5460 |
(0.1438) | (0.1185) | (0.1196) | (0.1230) | |||||
(7, 3) | 11 | 16 | 9 | 0.6628 | 0.6848 | 0.6792 | 0.6783 | |
(0.0891) | (0.0767) | (0.0769) | (0.0761) | |||||
30 | (6, 2) | 13 | 18 | 8 | 0.5587 | 0.5648 | 0.5557 | 0.5542 |
(0.1189) | (0.1046) | (0.1055) | (0.1064) | |||||
(7, 3) | 16 | 23 | 9 | 0.6663 | 0.6814 | 0.6781 | 0.6767 | |
(0.0743) | (0.0670) | (0.0671) | (0.0667) | |||||
50 | (6, 2) | 22 | 30 | 8 | 0.5605 | 0.5640 | 0.5595 | 0.5574 |
(0.0918) | (0.0851) | (0.0852) | (0.0855) | |||||
(7, 3) | 26 | 39 | 9 | 0.6701 | 0.6789 | 0.6774 | 0.6760 | |
(0.0574) | (0.0545) | (0.0546) | (0.0542) |
表 3
α已知时, 失效率函数H(x)的估计(x=8)"
n | (α, θ) | m1 | m2 | t0 | ||||
20 | (6, 2) | 9 | 12 | 8 | 0.2676 | 0.2620 | 0.2593 | 0.2415 |
(0.2677) | (0.2188) | (0.2156) | (0.2186) | |||||
(7, 3) | 11 | 16 | 9 | 0.3913 | 0.3624 | 0.3582 | 0.3392 | |
(0.2316) | (0.1915) | (0.1914) | (0.2064) | |||||
30 | (6, 2) | 13 | 18 | 8 | 0.2591 | 0.2570 | 0.2551 | 0.2428 |
(0.2133) | (0.1872) | (0.1856) | (0.1892) | |||||
(7, 3) | 16 | 23 | 9 | 0.3823 | 0.3636 | 0.3606 | 0.3469 | |
(0.1860) | (0.1649) | (0.1650) | (0.1750) | |||||
50 | (6, 2) | 22 | 30 | 8 | 0.2547 | 0.2540 | 0.2529 | 0.2451 |
(0.1630) | (0.1509) | (0.1503) | (0.1542) | |||||
(7, 3) | 26 | 39 | 9 | 0.3774 | 0.3667 | 0.3648 | 0.3564 | |
(0.1449) | (0.1355) | (0.1355) | (0.1407) |
表 4
α和θ都未知时的估计"
n | (α, θ) | m1 | m2 | t0 | ||||
20 | (6, 2) | 9 | 12 | 8 | 6.1534 | 2.3660 | 6.0033 | 2.1155 |
(0.0256) | (0.3123) | (0.0185) | (0.2516) | |||||
(7, 3) | 11 | 16 | 9 | 7.1179 | 3.3724 | 7.0012 | 3.1045 | |
(0.0168) | (0.2500) | (0.0122) | (0.2174) | |||||
30 | (6, 2) | 13 | 18 | 8 | 6.1017 | 2.2269 | 6.0017 | 2.0765 |
(0.0169) | (0.2359) | (0.0122) | (0.2085) | |||||
(7, 3) | 16 | 23 | 9 | 7.0784 | 3.2426 | 7.0006 | 3.0715 | |
(0.0112) | (0.1992) | (0.0082) | (0.1830) | |||||
50 | (6, 2) | 22 | 30 | 8 | 6.0607 | 2.1080 | 6.0007 | 2.0251 |
(0.0101) | (0.1674) | (0.0074) | (0.1590) | |||||
(7, 3) | 26 | 39 | 9 | 7.0474 | 3.1085 | 7.0007 | 3.0146 | |
(0.0068) | (0.1466) | (0.0050) | (0.1425) |
表 5
参数、可靠度及失效率的估计(x=0.7)"
m1 | m2 | t0 | | | |||||
6 | 10 | 0.53 | 0.5009 | 4.6144 | 0.2167 | 0.4935 | 3.9552 | 0.2879 | 5.6503 |
0.60 | 0.5009 | 3.2505 | 0.3076 | 0.4917 | 2.9550 | 0.3709 | 4.2215 | ||
8 | 12 | 0.58 | 0.5009 | 3.5210 | 0.2840 | 0.4920 | 3.1297 | 0.3559 | 4.4711 |
0.61 | 0.5009 | 3.4805 | 0.2873 | 0.4926 | 3.2128 | 0.3401 | 4.5897 | ||
11 | 14 | 0.62 | 0.5009 | 3.3157 | 0.3016 | 0.4921 | 3.0394 | 0.3599 | 4.3420 |
0.63 | 0.5009 | 3.4674 | 0.2884 | 0.4928 | 3.2362 | 0.3355 | 4.6232 | ||
13 | 16 | 0.66 | 0.5009 | 3.4647 | 0.2886 | 0.4927 | 3.2172 | 0.3385 | 4.5960 |
0.68 | 0.5009 | 4.1000 | 0.2439 | 0.4941 | 3.8589 | 0.2751 | 5.5127 | ||
15 | 18 | 0.70 | 0.5009 | 3.6627 | 0.2730 | 0.4933 | 3.4337 | 0.3147 | 4.9053 |
0.72 | 0.5009 | 3.7957 | 0.2635 | 0.4937 | 3.5960 | 0.2971 | 5.1371 | ||
17 | 20 | 0.78 | 0.5009 | 3.7430 | 0.2672 | 0.4935 | 3.5351 | 0.3034 | 5.0501 |
0.84 | 0.5009 | 3.9352 | 0.2541 | 0.4940 | 3.7478 | 0.2821 | 5.3541 |
1 |
Han M . E-Bayesian estimation and its E-posterior risk of the exponential distribution parameter based on complete and Type-Ⅰ censored samples. Commun Statist-Theor M, 2020, 49 (8): 1858- 1872
doi: 10.1080/03610926.2019.1565837 |
2 |
Zhu X J , Balakrishnan N , Feng C Z , et al. Exact likelihood-ratio tests for joint Type-Ⅱ censored exponential data. Statistics, 2020, 54 (3): 636- 648
doi: 10.1080/02331888.2020.1764559 |
3 |
Hideki N , Balakrishnan N . A consistent method of estimation for the three-parameter lognormal distribution based on Type-Ⅱ right censored data. Commun Statist-Theor M, 2016, 45 (19): 5693- 5708
doi: 10.1080/03610926.2014.948205 |
4 | Indrani B , Balakrishnan N . A note on the prediction of censored exponential lifetimes in a simple step-stress model with Type-Ⅱ censoring. Calc Stat Assoc Bull, 2018, 70 (1): 57- 73 |
5 | Ren J R , Gui W H . A statistical inference for generalized Rayleigh model under Type-Ⅱ progressive censoring with binomial removals. J Syst Eng Electron, 2020, 31 (1): 206- 223 |
6 |
Indrani B , Balakrishnan N . Prediction of censored exponential lifetimes in a simple step-stress model under progressive Type-Ⅱ censoring. Computation Stat, 2017, 32 (4): 1665- 1687
doi: 10.1007/s00180-016-0684-0 |
7 | 邓严林. 双边定数截尾下Topp-Leone分布的Bayes估计与预测. 江西师范大学学报(自然科学版), 2021, 45 (3): 272- 277 |
Deng Y L . Bayesian estimation and prediction for the Topp-Leone distribution under type-Ⅱ doubly censored sample. Journal of Jiangxi Normal University(Natural Science), 2021, 45 (3): 272- 277 | |
8 |
Rezapour M , Alamatsaz M H , Balakrishnan N . Distribution of the number of observations greater than the ith dependent progressively Type-Ⅱ censored order statistic and its use in goodness-of-fit testing. Commun Statist-Theor M, 2015, 44 (12): 2517- 2529
doi: 10.1080/03610926.2015.1043796 |
9 |
Wu S J , Kus C . On estimation based on progressive first-failure-censored sampling. Comput Stat Data An, 2009, 53 (10): 3659- 3670
doi: 10.1016/j.csda.2009.03.010 |
10 | Ahmadi M V , Doostparast M , Ahmadi . Estimating the lifetime performance index with Weibull distribution based on progressive first-failure censoring scheme. J Comput Appl Math, 2013, 239 (1): 93- 102 |
11 |
Ahmed E . Estimation and prediction for the generalized inverted exponential distribution based on progressively first-failure-censored data with application. J Appl Stat, 2017, 44 (9): 1576- 1608
doi: 10.1080/02664763.2016.1214692 |
12 |
Lio Y L , Tsai T R . Estimation of δ=P(X < Y) for Burr XII distribution based on the progressively first failure-censored samples. J Appl Stat, 2012, 39: 309- 322
doi: 10.1080/02664763.2011.586684 |
13 | Gyan P . Empirical estimation based on progressive first failure censored generalized pareto data. Afri Stat, 2018, 13 (2): 1683- 1697 |
14 |
Shafay A R , Balakrishnan N . Estimation and prediction for an exponential form distribution based on combined Type-Ⅱ censored samples. Bull Malays Math Sci Soc, 2019, 42 (4): 1535- 1553
doi: 10.1007/s40840-017-0563-z |
15 |
Lin C T , Hsu Y Y , Lee S Y , Balakrishnan N . Inference on constant stress accelerated life tests for log-location-scale lifetime distributions with Type-Ⅰ hybrid censoring. J Stat Comput Sim, 2019, 89 (4): 720- 749
doi: 10.1080/00949655.2019.1571591 |
16 | Debasis K D , Avijit J . Analysis of Type-Ⅱ progressively hybrid censored data. Comput Stat Data An, 2006, 50 (4): 2509- 2528 |
17 |
Balakrishnan N , Shafay A R . One- and two-sample Bayesian prediction intervals based on Type-Ⅱ hybrid censored data. Commun Statist-Theor M, 2012, 41 (9): 1511- 1531
doi: 10.1080/03610926.2010.543300 |
18 | 茆诗松, 濮晓龙, 刘忠. 寿命数据中的统计模型与方法. 北京: 中国统计出版社, 1998: 101- 103 |
Mao S S , Pu X L , Liu Z . Statistical Models and Methods for Lifetime Data. Beijing: China Statistics Press, 1998: 101- 103 | |
19 |
Arora S , Mahajan K K , Kumari R . Bayes estimators for the reliability and hazard rate functions of Topp-Leone distribution using Type-Ⅱ censored data. Commun Statist-Simul C, 2019,
doi: 10.1080/03610918.2019.1602646 |
20 |
韩明. 不同损失函数下Poisson分布参数的E-Bayes估计及其E-MSE. 数学物理学报, 2019, 39A (3): 664- 673
doi: 10.3969/j.issn.1003-3998.2019.03.023 |
Han M . E-Bayesian estimation and its E-MSE of Possion distribution parameter under different loss functions. Acta Math Sci, 2019, 39A (3): 664- 673
doi: 10.3969/j.issn.1003-3998.2019.03.023 |
|
21 |
Nigm A M , Al-Hussaini E K , Jaheen Z F . Bayesian one-sample prediction of future observations under Pareto distribution. Statistics, 2003, 37 (6): 527- 536
doi: 10.1080/02331880310001598837 |
[1] | 韩明. 失效概率的E-Bayes估计和E-MSE及其应用[J]. 数学物理学报, 2022, 42(6): 1790-1801. |
[2] | 叶仁道,王仲池,罗堃,林雅. 多个偏正态总体共同位置参数的Bootstrap置信区间[J]. 数学物理学报, 2021, 41(1): 194-216. |
[3] | 韩明. 不同损失函数下Poisson分布参数的E-Bayes估计及其E-MSE[J]. 数学物理学报, 2019, 39(3): 664-673. |
[4] | 韩明. Poisson分布参数的E-Bayes估计及其性质[J]. 数学物理学报, 2016, 36(5): 1010-1016. |
[5] | 韩明. 二项分布可靠度E-Bayes估计的性质[J]. 数学物理学报, 2013, 33(1): 62-70. |
[6] | 韩明. 只有一个失效数据情形失效概率的E-Bayes估计[J]. 数学物理学报, 2011, 31(2): 577-583. |
[7] | 韩明. 失效概率的E-Bayes估计及其性质[J]. 数学物理学报, 2007, 27(3): 488-495. |
[8] | 夏天; 唐年胜; 王学仁; 张文专. 非线性再生散度随机效应模型的渐近性质[J]. 数学物理学报, 2007, 27(1): 146-154. |
[9] | 丁洁丽;陈希孺. 广义线性回归极大似然估计的强相合性[J]. 数学物理学报, 2006, 26(2): 168-173. |
[10] | 韩明, 丁元耀. 失效率的综合E-Bayes估计[J]. 数学物理学报, 2005, 25(5): 678-684. |
[11] | 王炳兴. 指数分布基于多重定数截尾样本的近似Bayes估计[J]. 数学物理学报, 2005, 25(3): 414-420. |
[12] | 田玉斌, 张英, 李国英. Logistic响应分布分位数的鞍点近似置信区间[J]. 数学物理学报, 2005, 25(1): 110-118. |
[13] | 韩明. 无失效数据情形失效率的估计及其应用[J]. 数学物理学报, 2000, 20(3): 364-369. |
[14] | 石磊, 向黎明, 王学仁. 混合线性模型效应参数的影响分析[J]. 数学物理学报, 1996, 16(3): 316-323. |
[15] | 黄养新, 王祖喜. 正态分布族的参数的经验Bayes估计的收敛速度[J]. 数学物理学报, 1996, 16(2): 205-209. |
|