| 1 | Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementarity Problems. New York: Springer, 2003 | | 2 | Kinderlehrer D, Stampacchia G. An Introduction to Variational Inequalities and Their Applications. New York: Academic Press, 1980 | | 3 | Goldstein A A . Convex programming in Hilbert space. Bull Amer Math Soc, 1964, 70, 709- 710 | | 4 | Tseng P . A modified forward-backward splitting method for maximal monotone mappings. SIAM J Control Optim, 2000, 38, 431- 446 | | 5 | 贺月红, 龙宪军. 求解伪单调变分不等式问题的惯性收缩投影算法. 数学物理学报, 2021, 41A(6): 1897-1911 | | 5 | He Y H, Long X J. A inertial contraction and projection algorithm for pseudomonotone variational inequality problems. 2021, 41A(6): 1897-1911 | | 6 | 万升联. 解变分不等式的一种二次投影算法. 数学物理学报, 2021, 41A(1): 237-244 | | 6 | Wan S L. A double projection algorithm for solving variational inequalities. 2021, 41A(1): 237-244 | | 7 | Fan J J , Qin X L . Weak and strong convergence of inertial Tseng's extragradient algorithms for solving variational inequality problems. Optimization, 2021, 70, 1195- 1216 | | 8 | Thong D V , Voung P T . Modified Tseng's extragradient methods for solving pseudo-monotone variational inequalities. Optimization, 2019, 68, 2207- 2226 | | 9 | Yang J , Liu H W . Strong convergence result for solving monotone variational inequalities in Hilbert space. Numer Algor, 2019, 80, 741- 752 | | 10 | Lei M , He Y R . An extragradient method for solving variational inequalities without monotonocity. J Optim Theory Appl, 2021, 188, 432- 446 | | 11 | Thong D V , Hieu D V . Mann-type algorithms for variational inequality problems and fixed point problems. Optimization, 2020, 69, 2305- 2326 | | 12 | Thong D V , Hieu D V . Some extragradient-viscosity algorithms for solving variational inequality problems and fixed point problems. Numer Algor, 2019, 82, 761- 789 | | 13 | 郭丹妮, 蔡钢. 关于变分不等式和不动点问题的新迭代算法[OL]. 数学学报(中文版), [2021-01-15]. http://kns.cnki.net/kcms/detail/11.2038.O1.20210114.1040.010.html | | 13 | Guo D N, Cai G. A new iterative method for solving variational inequality and fixed point problems[OL]. Acta Mathematica Sinica(Chinese Series), [2021-01-15]. http://kns.cnki.net/kcms/detail/11.2038.O1.20210114.1040.010.html | | 14 | Ceng L C , Shang M J . Hybrid inertial subgradient extragradient methods for variational inequalities and fixed point problems involving asymptotically nonexpansive mappings. Optimization, 2021, 70, 715- 740 | | 15 | Karamardian S . Complementarity problems over cones with monotone and pseudomonotone maps. J Optim Theory Appl, 1976, 18, 445- 454 | | 16 | Chidume C E , Maruster S . Iterative methods for the computation of fixed points of demicontractive mappings. J Comput Appl Math, 2010, 234, 861- 882 | | 17 | Goebel K, Reich S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. New York: Marcel Dekker, 1984 | | 18 | Denisov S V , Semenov V V , Chabak L M . Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators. Cybern Syst Anal, 2015, 51, 757- 765 | | 19 | Maingé P E . A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J Control Optim, 2008, 47, 1499- 1515 | | 20 | Xu H K . Iterative algorithms for nonlinear operators. J Lond Math Soc, 2002, 66, 240- 256 | | 21 | Cottle R W , Yao J C . Pseudo-monotone complementarity problems in Hilbert space. J Optim Theo Appl, 1992, 75, 281- 295 |
|