| 1 | Begley T , Moore K . On short time existence of Lagrangian mean curvature flow. Math Ann, 2017, 367: 1473- 1515 |
| 2 | Bressan A . Vanishing viscosity solutions of nonlinear hyperbolic systems. Annals of Math, 2005, 161: 223- 342 |
| 3 | Chau A , Chen J Y , He W Y . Lagrangian mean curvature flow for entire Lipschitz graphs. Calc Var, 2012, 44: 199- 220 |
| 4 | Chau A , Chen J Y , Yuan Y . Lagrangian mean curvature flow for entire Lipschitz graphs Ⅱ. Math Ann, 2013, 357: 165- 183 |
| 5 | Chen J Y , Pang C . Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs. C R Acad Sci Paris Ser I, 2009, 347: 1031- 1034 |
| 6 | Chou K S , Kwong Y C . General initial data for a class of parabolic equations including the curve shortening problem. Discrete and Continuous Dynamical Systems, 2020, 40: 2963- 2986 |
| 7 | Duan S S , He C L , Huang S J . Hyperbolic mean curvature flow for Lagrangian graphs: One dimensional case. Journal of Geometry and Physics, 2020, 157: 103853 |
| 8 | Gage M , Hamilton R S . The heat equation shrinking convex plane curves. J Differential Geom, 1986, 23: 69- 96 |
| 9 | Ginder E , Svadlenka K . Wave-type threshold dynamics and the hyperbolic mean curvature flow. Japan J Indust Appl Math, 2016, 33: 501- 523 |
| 10 | Grayson M A . The heat equation shrinks embedded plane curves to round points. J Differential Geom, 1987, 26: 285- 314 |
| 11 | He C L , Kong D X , Liu K F . Hyperbolic mean curvature flow. J Differential Equations, 2009, 246: 373- 390 |
| 12 | He C L , Huang S J , Xing X M . Self-similar solutions to the hyperbolic mean curvature flow. Acta Math Sci, 2017, 37: 657- 667 |
| 13 | Huisken G . Flow by mean curvature of convex surfaces into spheres. J Differential Geom, 1984, 20: 237- 266 |
| 14 | Huisken G , Ilmanen T . The inverse mean curvature flow and the Riemannian Penrose inequality. J Differential Geom, 2001, 59: 353- 437 |
| 15 | Kong D X. Cauchy Problem for Quasilinear Hyperbolic Systems. Tokyo: The Mathematical Society of Japan, 2000 |
| 16 | Kong D X . Hyperbolic Geometric Flow//Proceedings of ICCM 2007. Beijing: Higher Education Press, 2007, 95- 110 |
| 17 | Kong D X , Liu K F . Wave character of metrics and hyperbolic geometric flow. J Math Phys, 2007, 48: 103508 |
| 18 | Kong D X , Liu K F , Wang Z G . Hyperbolic mean curvature flow: evolution of plane curves. Acta Math Sci, 2009, 29B: 493- 514 |
| 19 | Kong D X , Liu K F , Wang Y Z . Life-span of classical solutions to hyperbolic geometric flow in two space variables with slow decay initial data. Comm Partial Differential Equations, 2011, 36: 162- 184 |
| 20 | Kong D X , Liu K F , Xu D L . The hyperbolic geometric flow on Riemann surfaces. Comm Partial Differential Equations, 2009, 34: 553- 580 |
| 21 | Kong D X , Wang Z G . Formation of singularities in the motion of plane curves under hyperbolic mean curvature flow. J Differential Equations, 2009, 247: 1694- 1719 |
| 22 | Kusumasari V . Hyperbolic mean curvature flow with an obstacle. Sci Rep Kanazawa Univ, 2018, 62: 1- 22 |
| 23 | LeFloch P G , Smoczyk K . The hyperbolic mean curvature flow. J Math Pures Appl, 2008, 90: 591- 614 |
| 24 | Li T T, Zhou Y. Nonlinear Wave Equations. Berlin: Springer, 2017 |
| 25 | Nguyen T A , Yuan Y . A priori estimates for Lagrangian mean curvature flows. International Mathematics Research Notices, 2011, 2011: 4376- 4383 |
| 26 | Olver P J. Applications of Lie Groups to Differential Equations. Berlin: Springer-Verlag, 1993 |
| 27 | Smoczyk K . Longtime existence of the Lagrangian mean curvature flow. Calculus of Variations, 2004, 20: 25- 46 |
| 28 | Smoczyk K , Wang M T . Mean curvature flows of Lagrangian submanifolds with convex potentials. J Differential Geometry, 2002, 62: 243- 257 |
| 29 | Smoczyk K . Angle theorems for the Lagrangian mean curvature flow. Math Z, 2002, 240: 849- 883 |
| 30 | Xu C. Symmetries of geometric fows. 2010, ArXiv: 1001. 1394 |
| 31 | Yau S T . Review of geometry and analysis. Asian J Math, 2000, 4: 235- 278 |
| 32 | Yuan Y. Special Lagrangian Equations//Chen J, Lu P, Lu Z, Zhang Z. Geometric Analysis. Boston: Birkhauser, 2020, 521-536 |
| 33 | Yuan Y . A Bernstein problem for special Lagrangian equations. Invent Math, 2002, 150: 117- 125 |
| 34 | Zhu X P. Lectures on Mean Curvature flows. Providence, RI: Amer Math Soc, 2002 |