| 1 | Fujita H . On the blowing up of solutions of the Cauchy problem for $ u_{t}=\Delta u+u.{1+\alpha} $. J Fac Sci Univ Tokyo Sect I, 1966, 13, 109- 124 |
| 2 | Hayakawa K . On nonexistence of global solutions of some semilinear parabolic differential equations. Proc Japan Acad, 1973, 49, 503- 505 |
| 3 | Kobayashi K , Sirao T , Tanaka H . On the growing up problem for semilinear heat equations. J Math Soc Japan, 1977, 29 (3): 407- 424 |
| 4 | Weissler F B . Existence and nonexistence of global solutions for a semilinear heat equation. Israel J Math, 1981, 38 (1/2): 29- 40 |
| 5 | Bandle C , Levine H A , Zhang Q S . Critical exponents of Fujita type for inhomogeneous parabolic equations and systems. J Math Anal Appl, 2000, 251 (2): 624- 648 |
| 6 | Zhang Q S . A new critical phenomenon for semilinear parabolic problems. J Math Anal Appl, 1998, 219 (1): 125- 139 |
| 7 | Chipot M , Weissler F B . Some blowup results for a nonlinear parabolic equation with a gradient term. SIAM J Math Anal, 1989, 20 (4): 886- 907 |
| 8 | Souplet P . Finite time blow-up for a non-linear parabolic equation with a gradient term and applications. Math Methods Appl Sci, 1996, 19 (16): 1317- 1333 |
| 9 | Mitidieri $ \grave{{\rm E}} $ , Pokhozhaev S I . Fujita-type theorems for quasilinear parabolic inequalities with a nonlinear gradient. Doklady Mathematics, 2002, 66 (2): 187- 191 |
| 10 | Jleli M , Samet B , Souplet P . Discontinuous critical Fujita exponents for the heat equation with combined nonlinearities. Proc Amer Math Soc, 2020, 148 (6): 2579- 2593 |
| 11 | Galaktionov V A . Blow-up for quasilinear heat equations with critical Fujita's exponents. Proc Roy Soc Edinburgh Sect A, 1994, 124 (3): 517- 525 |
| 12 | Qi Y W . Critical exponents of degenerate parabolic equations. Sci China Ser A, 1995, 38 (10): 1153- 1162 |
| 13 | Zhao J N . On the Cauchy problem and initial traces for the evolution $ p $-Laplacian equations with strongly nonlinear sources. J Differential Equations, 1995, 121 (2): 329- 383 |
| 14 | Zeng X Z . Blow-up results and global existence of positive solutions for the inhomogeneous evolution $ p $-Laplacian equations. Nonlinear Anal, 2007, 66 (6): 1290- 1301 |
| 15 | Filippucci R , Lombardi S . Fujita type results for parabolic inequalities with gradient terms. J Differential Equations, 2020, 268 (5): 1873- 1910 |
| 16 | Lian S Z , Yuan H J , Cao C L , Gao W J , Xu X J . On the Cauchy problem for the evolution $ p $-Laplacian equations with gradient term and source. J Differential Equations, 2007, 235 (2): 544- 585 |
| 17 | Lu H Q , Zhang Z C . Blowup time estimates for a parabolic $ p $-Laplacian equation with nonlinear gradient terms. Z Angew Math Phys, 2019, 70 (3): 1- 18 |
| 18 | Lauren\c{c}ot P . Non-diffusive large time behavior for a degenerate viscous Hamilton-Jacobi equation. Comm Partial Differential Equations, 2009, 34 (3): 281- 304 |
| 19 | 伍卓群, 赵俊宁, 尹景学, 李辉来. 非线性扩散方程. 吉林: 吉林大学出版社, 1996 |
| 19 | fanxiexiantihuan] Wu Z Q , Zhao J N , Yin J X , Li H L . Nonlinear Diffusion Equations. Jilin: Jilin University Press, 1996 |
| 20 | Shang H F , Li F Q . On the Cauchy problem for the evolution $ p $-Laplacian equations with gradient term and source and measures as initial data. Nonlinear Anal, 2010, 72, 3396- 3411 |
| 21 | Galaktionov V A . Conditions for nonexistence in the large and localization of solutions of the Cauchy problem for a class of nonlinear parabolic equations. USSR Comput Math and Math Phys, 1983, 23 (6): 36- 44 |
| 22 | Zheng Z , Qi Y W , Zhou S L . Blow-up of $ p $-Laplacian evolution equations with variable source power. Sci China Math, 2017, 60 (3): 469- 490 |