| 1 | Bai Z Z . Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer Linear Algebra Appl, 2010, 17, 917- 933 | | 2 | Bai Z Z . On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J Matrix Anal Appl, 1999, 21, 67- 78 | | 3 | Bai Z Z . Experimental study of the asynchronous multisplitting relaxtation methods for linear complementarity problems. J Comput Math, 2002, 20, 561- 574 | | 4 | Bai Z Z , Evans D J . Matrix multisplitting relaxtion methods for linear complementarity problem. Inter J Comput Math, 1997, 63, 309- 326 | | 5 | Bai Z Z , Evans D J . Matrix multisplitting methods with applications to linear complementarity problems: Parallel synchronous and chaotic methods. Calculateurs Parallelés Réseaux et Systémes Répartis, 2001, 13, 125- 154 | | 6 | Bai Z Z , Evans D J . Parallel chaotic multisplitting iterative methods for the large spase linear complementarity problem. J Comput Math, 2001, 19, 281- 292 | | 7 | Bai Z Z , Evans D J . Matrix multisplitting methods with applications to linear complementarity problems: Parallel asynchronous methods. Int J Comput Math, 2002, 79, 205- 232 | | 8 | Bai Z Z , Huang Y G . A class of asynchronous iterations for the linear complementarity problem. J Comput Math, 2003, 21, 773- 790 | | 9 | Bai Z Z , Zhang L L . Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer Linear Algebra Appl, 2013, 20, 425- 439 | | 10 | Chen X , Nashed Z , Qi L . Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J Numer Anal, 2000, 38, 1200- 1216 | | 11 | Cottle R W , Pang J S , Stone RE . The Linear Complementarity Problem. Boston: Academic Press, 1992 | | 12 | Cryer C . The solution of a quadratic programming using systematic overrelaxation. SIAM J Control Optim, 1971, 9, 385- 392 | | 13 | Fischer A . A special Newton-type optimization method. Optim, 1992, 24, 269- 284 | | 14 | Foutayeni Y E L , Khaladi M . Using vector divisions in solving the linear complementarity problem. J Comput Appl Math, 2012, 236, 1919- 1925 | | 15 | Huang B H , Xie Y J , Ma C F . Krylov subspace methods to solve a class of tensor equations via the Einstein product. Numer Linear Algebra Appl, 2019, 26 (4): e2254 | | 16 | Huang N , Ma C F . The modulus-based matrix splitting algorithms for a class of weakly nonlinear complementarity problems. Numer Linear Algebra Appl, 2016, 23, 558- 569 | | 17 | 黄象鼎, 曾钟钢, 马亚南. 非线性数值分析的理论与方法. 武汉: 武汉大学出版社, 2004 | | 17 | Huang X D , Zeng Z G , Ma Y N . The Theory and Methods for Nonlinear Numerical Analysis. Wuhan: University of Wuhan Press, 2004 | | 18 | Jiang H Y , Qi L . A new nonsmooth equations approach to nonlinear complementarity problems. SIAM J Control Optim, 1997, 35, 178- 193 | | 19 | Lemke C E . Bimatrix equilibrium points and mathematical programming. Management Science, 1965, 11 (7): 681- 689 | | 20 | Luca D , Fancchinei F , Kanzow C . A semismooth equation approach to the solution of nonlinear complementarity problems. Math Program, 1996, 75, 407- 439 | | 21 | Murty K G . Linear Complementarity, Linear and Nonlinear Programming. Berlin: Heldermann, 1988 | | 22 | Qi L , Sun J . A nonsmooth version of Newtons method. Math Programming, 1993, 58, 353- 367 | | 23 | Sun Z , Zeng J P . A monotone semismooth Newton type method for a class of complementarity problems. J Comput Appl Math, 2011, 235, 1261- 1274 | | 24 | Tseng P . On linear convergence of iterative method for the variational inequality problem. J Comput Appl Math, 1995, 60, 237- 252 | | 25 | Xie Y J , Ke Y F . Neural network approaches based on new NCP-functions for solving tensor complementarity problem. J Appl Math Comput, 2021, 67, 833- 853 | | 26 | Yu Z , Qin Y . A cosh-based smoothing Newton method for P0 nonlinear complementarity problem. Nonlinear Anal, Real World Appl, 2011, 12, 875- 884 | | 27 | Zhang L L . Two-step modulus based matrix splitting iteration for linear complementarity problems. Numer Algoritm, 2011, 57, 83- 99 | | 28 | Zheng N , Yin J F . Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem. Numer Algoritm, 2011, 57, 83- 99 |
|