| [1] | Akhmediev N, Ankiewicz A, Taki M. Waves that appear from nowhere and disappear without a trace. Physics Letters A, 2009, 373(6): 675-678 | | [2] | Akhmediev N, Soto-Crespo J M, Ankiewicz A. Extreme waves that appear from nowhere: on the nature of rogue waves. Physics Letters A, 2009, 373(25): 2137-2145 | | [3] | Wen X Y, Yang Y, Yan Z. Generalized perturbation $(n, M)$-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schr?dinger equation. Physical Review E, 2015, 92(1): 012917 | | [4] | Pan C, Bu L, Chen S, et al. General rogue wave solutions under SU (2) transformation in the vector Chen-Lee-Liu nonlinear Schr?dinger equation. Physica D: Nonlinear Phenomena, 2022, 434: 133204 | | [5] | He J, Xu S, Cheng Y. The rational solutions of the mixed nonlinear Schr?dinger equation. AIP Advances, 2015, 5(1): 017105 | | [6] | Zhao L C, Guo B, Ling L. High-order rogue wave solutions for the coupled nonlinear Schr?dinger equations-II. Journal of Mathematical Physics, 2016, 57(4): 043508 | | [7] | Ankiewicz A, Akhmediev N. Rogue wave solutions for the infinite integrable nonlinear Schr?dinger equation hierarchy. Physical Review E, 2017, 96(1): 012219 | | [8] | Xu S, He J, Wang L. The Darboux transformation of the derivative nonlinear Schr?dinger equation. Journal of Physics A: Mathematical and Theoretical, 2011, 44(30): 305203 | | [9] | Guo B, Ling L, Liu Q P. High-order solutions and generalized Darboux transformations of derivative nonlinear Schr?dinger equations. Studies in Applied Mathematics, 2013, 130(4): 317-344 | | [10] | Zhang Y, Guo L, Xu S, et al. The hierarchy of higher order solutions of the derivative nonlinear Schr?dinger equation. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(6): 1706-1722 | | [11] | Wang L H, Porsezian K, He J S. Breather and rogue wave solutions of a generalized nonlinear Schr?dinger equation. Physical Review E, 2013, 87(5): 053202 | | [12] | Lou S, Lin J. Rogue waves in nonintegrable KdV-type systems. Chinese Physics Letters, 2018, 35(5): 050202 | | [13] | Wu H, Fei J, Ma W. Lump and rational solutions for weakly coupled generalized Kadomtsev-Petviashvili equation. Modern Physics Letters B, 2021, 35(26): 2150449 | | [14] | Zhou G, Li X. Space periodic solutions and rogue wave solution of the derivative nonlinear Schr?dinger equation. Wuhan University Journal of Natural Sciences, 2017, 22(5): 373-379 | | [15] | Ma W X. Nonlocal PT-symmetric integrable equations and related Riemann-Hilbert problems. Partial Differential Equations in Applied Mathematics, 2021, 4: 100190 | | [16] | Ablowitz M J, Musslimani Z H. Inverse scattering transform for the integrable nonlocal nonlinear Schr?dinger equation. Nonlinearity, 2016, 29(3): 915 | | [17] | Yang B, Yang J. Rogue waves in the nonlocal ${\mathcal {PT}} $ PT-symmetric nonlinear Schr?dinger equation. Letters in Mathematical Physics, 2019, 109(4): 945-973 | | [18] | Lin J, Jin X W, Gao X L, et al. Solitons on a periodic wave background of the modified KdV-Sine-Gordon equation. Communications in Theoretical Physics, 2018, 70(2): 119-126 | | [19] | Li L, Duan C, Yu F. An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de Vries (MKdV) equation. Physics Letters A, 2019, 383(14): 1578-1582 | | [20] | Zhong W P, Yang Z, Beli${\rm\acute{c}}$ M, et al. Breather solutions of the nonlocal nonlinear self-focusing Schr?dinger equation. Physics Letters A, 2021, 395: 127228 | | [21] | Ma W X, Zhou R. A coupled AKNS-Kaup-Newell soliton hierarchy. Journal of Mathematical Physics, 1999, 40(9): 4419-4428 | | [22] | Chen Z Y, Huang N N. Explicit N-soliton solution of the modified nonlinear Schr?dinger equation. Physical Review A, 1990, 41(7): 4066-4069 | | [23] | Huang N N, Chen Z Y. Alfven solitons. Journal of Physics A: Mathematical and General, 1990, 23(4): 439-453 | | [24] | Chen H H, Lee Y C, Liu C S. Integrability of nonlinear Hamiltonian systems by inverse scattering method. Physica Scripta, 1979, 20(3/4): 490-492 | | [25] | Kaup D J, Newell A C. An exact solution for a derivative nonlinear Schr?dinger equation. Journal of Mathematical Physics, 1978, 19(4): 798-801 | | [26] | Kawata T, Inoue H. Exact solution of derivative nonlinear Schr?dinger equation under nonvanishing conditions. J Phys Soc Jpn, 1978, 44(6): 1968-1976 | | [27] | Steudel H. The hierarchy of multi-soliton solutions of derivative nonlinear Schr?dinger equation. J Phys A, 2003, 36: 1931-1946 | | [28] | Zhou G Q, Huang N N. An $N$-soliton solution to the DNLS equation based on revised inverse scattering transform. Journal of Physics A: Mathematical and Theoretical, 2007, 40(45): 13607-13623 | | [29] | Zhou G. A multi-soliton solution of the DNLS equation based on pure Marchenko formalism. Wuhan University Journal of Natural Sciences, 2010, 15(1): 36-42 | | [30] | Zhou G, Bi X. Soliton solution of the DNLS equation based on Hirota's bilinear derivative transform. Wuhan University Journal of Natural Sciences, 2009, 14(6): 505-510 | | [31] | 蔡浩. 关于MNLS方程和DNLS方程的研究. 武汉大学, 2005 | | [31] | Cai H. Research about MNLS Equation and DNLS Equation. Wuhan Univ, 2005 | | [32] | Chen X J, Lam W K. Inverse scattering transform for the derivative nonlinear Schr?dinger equation with nonvanishing boundary conditions. Physical Review E, 2004, 69(6): 066604 | | [33] | Chen X J, Yang J K, Lam W K. $N$-soliton solution for the derivative nonlinear Schr?dinger equation with nonvanishing boundary conditions. Journal of Physics A: Math Gen, 2006, 39(13): 3263-3274 | | [34] | Lashkin V M. $N$-soliton solutions and perturbation theory for DNLS with nonvanishing condition. J Phys A, 2007, 40: 6119-6132 | | [35] | Zhou G. A newly revised inverse scattering transform for DNLS+ equation under nonvanishing boundary condition. Wuhan University Journal of Natural Sciences, 2012, 17(2): 144-150 | | [36] | Zhou G. Explicit breather-type and pure N-Soliton solution of DNLS+ equation with nonvanishing boundary condition. Wuhan University Journal of Natural Sciences, 2013, 18(2): 147-155 | | [37] | Osman M S, Almusawa H, Tariq K U, et al. On global behavior for complex soliton solutions of the perturbed nonlinear Schr?dinger equation in nonlinear optical fibers. Journal of Ocean Engineering and Science, 2022, 7(5): 431-443 | | [38] | Bourgain J. Global Solutions of Nonlinear Schr?dinger Equations. Providence, RI: American Mathematical Society, 1999 |
|