| [1] | Bieberbach L. $\Delta u={\rm e}^{u}$ und die authomorphen Funktionen. Math Ann, 1916, 77: 173-212 |
| [2] | Bingham N H, Goldie C M, Teugels J L. Regular Variation, Encyclopedia Math Appl. Cambridge: Cambridge University Press, 1987 |
| [3] | Caffarelli L. Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation. Ann Math, 1990, 131: 135-150 |
| [4] | Caffarelli L, Nirenberg L, Spruck J. The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-Ampère equations. Comm Pure Appl Math, 1984, 37: 369-402 |
| [5] | Cheng S Y, Yau S T. On the regularity of the Monge-Ampère equation ${\rm det}((\partial ^2u/\partial x_{i}\partial x_{j})) = F(x, u)$. Comm Pure Appl Math, 1997, 30: 41-68 |
| [6] | Cheng S Y, Yau S T. On the existence of a complete K?hler metric on noncompact complex manifolds and the regularity of Fefferman's equation. Comm Pure Appl Math, 1980, 33: 507-544 |
| [7] | Cheng S Y, Yau S T. The real Monge-Ampère equation and affine flat structures//Chern S S, Wu W. Proceedings of 1980 Beijing Symposium on Differential Geometry and Differential Equations, Vol 1. Beijing: Science Press, 1982: 339-370 |
| [8] | Chuaqui M, Cortázar C, Elgueta M, Flores C, García-Melián J, Letelier R. On an elliptic problem with boundary blow-up and a singular weight: the radial case. Proc Roy Soc Edinburgh, 2003, 133: 1283-1297 |
| [9] | C$\hat{i}$rstea F C, Trombetti C. On the Monge-Ampère equation with boundary blow-up: existence, uniqueness and asymptotics. Calc Var Partial Differential Equations, 2008, 31: 167-186 |
| [10] | Du Y. Order Structure and Topological Methods in Nonlinear Partial Differential Equations. Singapore: World Scientific, 2006 |
| [11] | García-Melián J. Boundary behavior for large solutions to elliptic equations with singular weights. Nonlinear Anal, 2007, 67: 818-826 |
| [12] | Gladiali F, Porru G. Estimates for explosive solutions to $p$-Laplace equations, Progress in Partial Differential Equations (Pont-á-Mousson 1997), Vol 1. Pitman Res Notes Math Series, Longman, 1998, 383: 117-127 |
| [13] | Guan B, Jian H. The Monge-Ampère equation with infinite boundary value. Pacific J Math, 2004, 216: 77-94 |
| [14] | Jian H, Wang X, Zhao Y. Global smoothness for a singular Monge-Ampère equation. J Differential Equations, 2017, 263: 7250-7262 |
| [15] | Karamata J. Sur un mode de croissance régulière. Théorèmes fondamentaux. Bull Soc Math France, 1993, 61: 55-62 |
| [16] | Keller J B. On solutions of $\Delta u=f(u)$. Comm Pure Appl Math, 1957, 10: 503-510 |
| [17] | Lazer A C, McKenna P J. On singular boundary value problems for the Monge-Ampère operator. J Math Anal Appl, 1996, 197: 341-362 |
| [18] | Matero J. The Bieberbach-Rademacher problem for the Monge-Ampère operator. Manuscripta Math, 1996, 91: 379-391 |
| [19] | Mohammed A. On the existence of solutions to the Monge-Ampère equation with infinite boundary values. Proc Amer Math Soc, 2007, 135: 141-149 |
| [20] | Mohammed A. Existence and estimates of solutions to a singular Dirichlet problem for the Monge-Ampère equation. J Math Anal Appl, 2008, 340: 1226-1234 |
| [21] | Olofsson A. Apriori estimates of Osserman-Keller type. Differ Integral Equ, 2003, 16: 737-756 |
| [22] | Osserman R. On the inequality $\Delta \geq f(u)$. Pacific J Math, 1957, 7: 1641-1647 |
| [23] | Pogorelov A V. The Multidimensional Minkowski Problem. New York: Wiley, 1978. |
| [24] | Rademacher H. Einige Besondere Probleme Partieller Differentialgleichungen, in: Die Differential- und Integralgleichungen, der Mechanik und Physikl. New York: Rosenberg, 1943 |
| [25] | Savin O. Pointwise $C^{2,\alpha}$ estimates at the boundary for the Monge-Ampère equation. J Amer Math Soc, 2013, 26: 63-99 |
| [26] | Seneta E. Regular Varying Functions, Lecture Notes in Math. Heidelberg: Springer-Verlag, 1976 |
| [27] | Trudinger N, Wang X. Boundary regularity for the Monge-Ampère and affine maximal surface equations. Ann Math, 2008, 167: 993-1028 |
| [28] | Tso K. On a real Monge-Ampère functional. Invent Math, 1990, 101: 425-448 |
| [29] | Wan H, Shi Y, Liu W. Refined second boundary behavior of the unique strictly convex solution to a singular Monge-Ampère equation. Adv Nonlinear Anal, 2022, 11: 321-356 |
| [30] | Yang H, Chang Y. On the blow-up boundary solutions of the Monge-Ampère equation with singular weights. Commun Pure Appl Anal, 2012, 11: 697-708 |
| [31] | Zhang X, Du Y. Sharp conditions for the existence of boundary blow-up solutions to the Monge-Ampère equation. Calc Var Partial Differential Equations, 2018, 57: 30 |
| [32] | Zhang X, Feng M. Boundary blow-up solutions to the Monge-Ampère equation: Sharp conditions and asymptotic behavior. Adv Nonlinear Anal, 2020, 9: 729-744 |
| [33] | Zhang X, Feng M. The existence and asymptotic behavior of boundary blow-up solutions to the $k$-Hessian equation. J Differential Equations, 2019, 267: 4626-4672 |
| [34] | Zhang Z. Optimal global and boundary behavior of large solutions to the Monge-Ampère equation. J Funct Anal, 2020, 278: 108512 |
| [35] | Zhang Z. Boundary behavior of large solutions to the Monge-Ampère equations with weights. J Differential Equations, 2015, 259: 2080-2100 |