| [1] | Banerjee A, Merugu S, Dhillon I, Ghosh J. Clustering with bregman divergences. Journal of Machine Learning Research, 2005, 6: 1705-1749 | | [2] | Bolte J, Daniilidis A, Ley O, et al. Characterizations of Lojasiewicz inequalities and applications: subgradient flows, talweg, convexity. Transactions of the American Mathematical Society, 2010, 362(6): 3319-3363 | | [3] | Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations Trends in Machine Learning, 2010, 3(1): 1-122 | | [4] | Bregman L M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 1967, 7(3): 200-217 | | [5] | Chao M T, Cheng C Z, Zhang H B. A linearized alternating direction method of multipliers with substitution procedure. Asia-Pacific Journal of Operational Research, 2015, 32(3): 1550011 | | [6] | Chao M T, Deng Z, Jian J B. Convergence of linear Bregman ADMM for nonconvex and nonsmooth problems with nonseparable structure. Complexity, 2020, 2020: Art ID 6237942 | | [7] | Chao M T, Zhang Y, Jian J B. An inertial proximal alternating direction method of multipliers for nonconvex optimization. International Journal of Computer Mathematics, 2021, 98(6): 1199-1217 | | [8] | Chen C H, He B S, Ye Y Y, et al. The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Mathematical Programming, 2016, 155: 57-79 | | [9] | Deng W, Yin W T. On the global and linear convergence of the generalized alternating direction method of multipliers. Journal of Scientific Computing, 2016, 66(3): 889-916 | | [10] | Feng J K, Zhang H B, Cheng C Z, et al. Convergence analysis of L-ADMM for multi-block linear-constrained separable convex minimization problem. Journal of the Operations Research Society of China, 2015, 3(4): 563-579 | | [11] | Gabay D, Mercier B. A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers and Mathematics with Applications, 1976, 2(1): 17-40 | | [12] | Glowinski R, Marroco A. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires. Journal of E-quine Veterinary Science, 1975, 2(2): 41-76 | | [13] | Guo K, Han D R, Wang D Z W, et al. Convergence of ADMM for multi-block nonconvex separable optimization models. Frontiers of Mathematics in China, 2017, 12(5): 1139-1162 | | [14] | Guo K, Hand D R, Wu T T. Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints. International Journal of Computer Mathematics, 2017, 94(8): 1653-1669 | | [15] | Guo K, Wang X. Convergence of generalized alternating direction method of multipliers for nonseparable nonconvex objective with linear constraints. Journal of Mathematical Research with Applications, 2018, 38(5): 523-540 | | [16] | Hong M Y, Lou Z Q, Razaviyayn M. Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM Journal on Optimization, 2016, 26(1): 337-364 | | [17] | Li M, Sun D F, Toh K C. A convergent 3-blocksemi-proximal ADMM for convex minimization problems with one strongly convex block. Asia-Pacific Journal of Operational Research, 2015, 32(4): 1550024 | | [18] | Rockafellar R T, Wets R J B. Variational Analysis. Berlin: Springer Science and Business Media, 2009 | | [19] | Wang F H, Cao W F, Xu Z B. Convergence of multi-block Bregman ADMM for nonconvex composite problems. Science China Information Sciences, 2018, 61(12): 1-12 | | [20] | Wang F H, Xu Z B, Xu H K. Convergence of Bregman alternating direction method with multipliers for nonconvex composite problems. arXiv: 1410.8625 | | [21] | Wang H H, Banerjee A. Bregman alternating direction method of multipliers//Ghahramani Z, Welling M, Cortes C, et al. Advances in Neural Information Processing Systems, 2014: 2816-2824 | | [22] | Xu Z B, Chang X Y, Xu F M, Zhang H. $L_\frac{1}{2}$ regularization: a thresholding representation theory and a fast solver. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23: 1013-1027 | | [23] | Yang W H, Han D. Linear Convergence of the alternating direction method of multipliers for a class of convex optimization problems. SIAM Journal on Numerical Analysis, 2016, 54(2): 625-640 | | [24] | Yashtini M. Multi-block nonconvex nonsmooth proximal ADMM: Convergence and rates Under Kurdyka-ojasiewicz property. Journal of Optimization Theory and Applications, 2021, 190(3): 966-998 | | [25] | Zeng J S, Fang J, Xu Z B. Sparse SAR imaging based on $L_\frac{1}{2}$ regularization. Sci China Infor Sci, 2012, 55: 1755-1775 | | [26] | Zeng J S, Lin S B, Wang Y, et al. $L_\frac{1}{2}$ Regularization: Convergence of iterative half thresholding algorithm. IEEE Transactions on Signal Processing, 2014, 62(9): 2317-2329 | | [27] | Zeng J S, Xu Z B, Zhang B, et al. Accelerated $L_\frac{1}{2}$ regularization based SAR imaging via BCR and reduced Newton skills. Signal Processing, 2013, 93: 1831-184 |
|