数学物理学报 ›› 2023, Vol. 43 ›› Issue (1): 69-81.
收稿日期:
2021-01-13
修回日期:
2022-09-22
出版日期:
2023-02-26
发布日期:
2023-03-07
作者简介:
单远, E-mail: 基金资助:
Received:
2021-01-13
Revised:
2022-09-22
Online:
2023-02-26
Published:
2023-03-07
Supported by:
摘要:
该文主要研究Dirac方程周期解的存在性和多重性. 通过引入相对Morse指标对相应的线性Dirac方程进行分类, 并给出解存在的扭转性条件.
中图分类号:
单远. 渐近线性Dirac方程的相对Morse指标及其多解性[J]. 数学物理学报, 2023, 43(1): 69-81.
Shan Yuan. Relative Morse Index and Multiple Solutions for Asymptotically Linear Dirac Equation[J]. Acta mathematica scientia,Series A, 2023, 43(1): 69-81.
[1] | Abbondandolo A. Morse Theory for Hamiltonian Systems. London: Chapman Hall, 2001 |
[2] |
Ambrosetti A, Rabinowitz P H. Dual variational methods in critical point theory and applications. J Funct Anal, 1973, 14: 349-381
doi: 10.1016/0022-1236(73)90051-7 |
[3] |
Bartsch T, Ding Y. Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math Nachr, 2006, 279: 1267-1288
doi: 10.1002/mana.200410420 |
[4] | Chen C, Hu X. Maslov index for homoclinic orbits of Hamiltonian systems. Ann Inst H Poincaré Anal Non Linaire, 2007, 24: 589-603 |
[5] |
Conley C, Zehnder E. Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Comm Pure Appl Math, 1984, 37: 207-253
doi: 10.1002/cpa.3160370204 |
[6] |
Ding Y. Index theory for linear selfadjoint operator equations and nontrivial solutions for asymptotically linear operator equations. Calc Var Partial Differential Equations, 2010, 38: 75-109
doi: 10.1007/s00526-009-0279-5 |
[7] |
Ding Y. Infinitely many solutions for a class of nonlinear Dirac equations without symmetry. Nonlinear Anal, 2009, 70: 921-935
doi: 10.1016/j.na.2008.01.022 |
[8] |
Ding Y. Semi-classical ground states concerntrating on the nonlinear potential for a Dirac equation. J Differential Equations, 2010, 249: 1015-1034
doi: 10.1016/j.jde.2010.03.022 |
[9] |
Ding Y, Liu X. Semi-classical limits of ground states of a nonlinear Dirac equation. J Differential Equations, 2012, 252: 4962-4987
doi: 10.1016/j.jde.2012.01.023 |
[10] |
Ding Y, Liu X. Periodic waves of nonlinear Dirac equations. Nonlinear Anal, 2014, 109: 252-267
doi: 10.1016/j.na.2014.06.015 |
[11] |
Ding Y, Liu X. Periodic solutions of a Dirac equation with concave and convex nonlinearities. J Differential Equations, 2015, 258: 3567-3588
doi: 10.1016/j.jde.2015.01.013 |
[12] |
Ding Y, Liu X. Periodic solutions of an asymptotically linear Dirac equation. Annali di Matematica, 2017, 196: 717-735
doi: 10.1007/s10231-016-0592-5 |
[13] |
Ding Y, Ruf B. Existence and concentration of semiclassical solutions for Dirac equations with critical nonlinearities. SIAM J Math Anal, 2012, 44: 3755-3785
doi: 10.1137/110850670 |
[14] | Ding Y, Ruf B. Solutions of a nonlinear Dirac equation with external fields. Arch Ration Mech Anal, 2008, 190: 1007-1032 |
[15] | Ding Y, Shan Y. Index theory for linear selfadjoint operator equations and nontrivial solutions for asymptotically linear operator equations (II). arXiv:1104.1670v1 |
[16] |
Ding Y, Wei J. Stationary states of nonlinear Dirac equations with general potentials. Rev Math Phys, 2008, 20: 1007-1032
doi: 10.1142/S0129055X0800350X |
[17] | Ekeland I. Une theorie de Morse pour les systemes hamiltoniens convexes. Ann Inst H Poincaré Anal Non Linaire, 1984, 1: 19-78 |
[18] | Esteban M, Séré E. An overview on linear and nonlinear Dirac equations. Discrete Contin Dyn Syst, 2002, 8: 281-397 |
[19] |
Esteban M, Séré E. Stationary states of the nonlinear Dirac equation: a variational approach. Commun Math Phys, 1995, 171: 323-350
doi: 10.1007/BF02099273 |
[20] | Li G B, Zhou H S. The existence of a positive solution to a asymptotically linear scalar field equations. Proc R Soc Edinburgh Ser A, 2000, 130: 81-105 |
[21] |
Liu C. Maslov-type index theory for symplectic paths with Lagrangian boundary conditions. Adv Nonlinear Stud, 2007, 7: 131-161
doi: 10.1515/ans-2007-0107 |
[22] |
Liu C. A note on the relations between the various index theories. J Fixed Point Theory Appl, 2017, 19: 617-648
doi: 10.1007/s11784-016-0368-y |
[23] | Long Y. A Maslov-type index theory for symplectic paths. Topol Methods Nonlinear Anal, 1997, 10: 47-78 |
[24] | Long Y. Maslov-type index, degenerate critical points, and asymptotically linear Hamiltonian systems. Sci China, 1990, 33: 1409-1419 |
[25] | Long Y, Zehnder E. Morse theory for forced oscillations of asymptotically linear Hamiltonian systems// Alberverio S, et al. Stochastic Processes, Phiscs and Geometry. Teaneck: World Scientific, 1990: 528-563 |
[26] | Long Y, Zhu C. Maslov type index theory for symplectic paths and spectral flow (II). Chin Ann Math, 2000, 21B: 89-108 |
[27] | Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providence, RI: American Mathematical Society, 1986 |
[28] | Ranada A F. Classical nonlinear dirac field models of extended particles//Barut A O. Quantum Theory, Groups, Fields and Particles. Reidel: Amsterdam, 1982 |
[29] |
Shan Y. Morse index and multiple solutions for the asymptotically linear Schrödinger type equation. Nonlinear Anal, 2013, 89: 170-178
doi: 10.1016/j.na.2013.05.014 |
[30] |
Shan Y. A twist condition and multiple solutions of unbounded self-adjoint operator equation with symmetries. J Math Anal Appl, 2014, 410: 597-606
doi: 10.1016/j.jmaa.2013.08.067 |
[31] | Struwe M. Variational Methods:Applications to Nonlinear Partifal Differential Equations and Hamiltonian Systems. New York: Springer, 1990 |
[32] | Thaller B. The Dirac Equation, Texts and Monographs in Physics. Berlin: Springer, 1992 |
[33] |
Wang Q, Liu C. A new index theory for linear self-adjoint operator equations and its applications. J Differential Equations, 2016, 260: 3749-3784
doi: 10.1016/j.jde.2015.10.046 |
[34] | Zhu C, Long Y. Maslov type index theory for symplectic paths and spectral flow (I). Chin Ann Math, 1999, 20B: 413-424 |
[1] | 姚旺进, 张慧萍. 一类具有瞬时和非瞬时脉冲的 |
[2] | 陈征艳,张家锋. $ \mathbb{R}^4 $ 中一类带陡峭位势的临界 Kirchhoff 型方程的基态解[J]. 数学物理学报, 2025, 45(2): 450-464. |
[3] | 张玉婷, 高兴慧, 彭剑英. 分裂可行性问题解集和有限族拟非扩张算子公共不动点集的公共元的迭代算法[J]. 数学物理学报, 2025, 45(1): 256-268. |
[4] | 张倩. 拟线性薛定谔方程组在有界区域上的正规化解[J]. 数学物理学报, 2025, 45(1): 1-30. |
[5] | 霍会霞, 李永祥. 一类弯曲的弹性梁方程正解的存在性[J]. 数学物理学报, 2024, 44(6): 1476-1484. |
[6] | 陈熙, 王征平. 含有Dirac位势的非线性S-P方程的约束极小元[J]. 数学物理学报, 2024, 44(4): 907-913. |
[7] | 陈铭超, 薛艳昉. 一类带扰动项的拟线性薛定谔方程的多解性[J]. 数学物理学报, 2024, 44(2): 417-428. |
[8] | 李仁华, 王征平. 含强制位势的分数阶薛定谔泊松方程的正规化解[J]. 数学物理学报, 2023, 43(6): 1723-1730. |
[9] | 周英告, 李周欣. 环绕定理在退化的椭圆型方程上的应用[J]. 数学物理学报, 2023, 43(6): 1759-1773. |
[10] | 潘灵荣, 王元恒. Hilbert 空间中不动点问题, 变分不等式系统和分裂均衡问题迭代算法的强收敛定理[J]. 数学物理学报, 2023, 43(6): 1880-1896. |
[11] | 陈清方,廖家锋,元艳香. 一类带临界指数的 Schrödinger-Newton 系统正解的存在性[J]. 数学物理学报, 2023, 43(5): 1373-1381. |
[12] | 代国伟,高思雨,马如云. 单位球上 Yamabe 方程的全局分歧[J]. 数学物理学报, 2023, 43(5): 1391-1396. |
[13] | 李永祥,韦启林. Banach空间半线性发展方程周期解的存在性结果及应用[J]. 数学物理学报, 2023, 43(3): 702-712. |
[14] | 冯美强, 张学梅. Monge-Ampère方程边界爆破解的最优估计和不存在性[J]. 数学物理学报, 2023, 43(1): 181-202. |
[15] | 薛艳昉, 朱新才. 一类拟线性薛定谔方程的多解性[J]. 数学物理学报, 2023, 43(1): 93-100. |
|