| [1] | Aubin T. Onlinear Analysis on Manifolds. Monge-Ampère Equations. New York: Springer-Verlag, 1982 |
| [2] | Bettiol R, Piccione P. Multiplicity of solutions to the Yamabe problem on collapsing Riemannian submersions. Pacific J Math, 2013, 266: 1-21 |
| [3] | Bettiol R, Piccione P. Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres. Calc Var Partial Differential Equations, 2013, 47: 789-807 |
| [4] | Bérard-Bergery L. La courbure scalaire de variétés riemanniennes//Séminaire Bourbaki. Berlin, Heidelberg: Springer, 2006: 225-245 |
| [5] | Brendle S. Blow-up phenomena for the Yamabe equation. J Amer Math Soc, 2008, 21: 951-979 |
| [6] | Caffarelli L A, Gidas B, Spruck J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm Pure Appl Math, 1989, 42: 271-297 |
| [7] | Dai G. Two Whyburn type topological theorems and its applications to Monge-Ampère equations. Calc Var Partial Differential Equations, 2016, 55: 97 |
| [8] | Dai G. Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros. Discrete Contin Dyn Syst, 2016, 36: 5323-5345 |
| [9] | de Lima L L, Piccione P, Zedda M. On bifurcation of solutions of the Yamabe problem in product manifolds. Ann Inst H Poincaré Anal Non Linéaire, 2012, 29: 261-277 |
| [10] | Gidas B, Ni W M, Nirenberg L. Symmetry and related properties via the maximum principle. Comm Math Phys, 1979, 68: 209-243 |
| [11] | Henry G, Petean J. Isoparametric hypersurfaces and metrics of constant scalar curvature. Asian J Math, 2014, 18: 53-68 |
| [12] | Jin Q, Li Y, Xu H. Symmetry and asymmetry: The method of moving spheres. Adv Differential Equations, 2008, 13: 601-640 |
| [13] | Kobayashi O. Scalar curvature of a metric with unit volume. Math Ann, 1987, 279: 253-265 |
| [14] | Obata M. The conjecture on conformal transformations of Riemannian manifolds. J Diff Geom, 1971, 6: 247-258 |
| [15] | Petean J. Metrics of constant scalar curvature conformal to Riemannian products. Proc Amer Math Soc, 2010, 138: 2897-2905 |
| [16] | Petean J. Multiplicity results for the Yamabe equation by Lusternik-Schnirelmann theory. J Funct Anal, 2019, 276: 1788-1805 |
| [17] | Pollack D. Nonuniqueness and high energy solutions for a conformally invariant scalar equation. Comm Anal Geom, 1993, 1: 347-414 |
| [18] | Schoen R. Variational theory for the total scalar curvature functional for Riemannian metrics and related topics//Lecture Notes in Math, Vol 1365. Berlin: Springer-Verlag, 1989: 120-154 |
| [19] | Whyburn G T. Topological Analysis. Princeton: Princeton University Press, 1958 |
| [20] | Yamabe H. On the deformation of Riemannian structures on compact manifolds. Osaka Math J, 1960, 12: 21-37 |