| [1] | Adachia S, Watanable T. G-invariant positive solutions for a quasilinear Schr?dinger equation. Adv Differential Equations, 2011, 16: 289-324 | | [2] | Adachia S, Watanable T. Uniqueness of the ground state solutions of quasilinear Schr?dinger equations. Nonlinear Anal, 2012, 75: 819-833 | | [3] | Arcoya D, Boccardo L, Orsina L. Existence of critical points for some noncoercive functionals. Ann Inst H Poincaré Anal Non Linéaire, 2001, 18(4): 437-457 | | [4] | Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Commum Pure Appl Math, 1983, 36: 437-478 | | [5] | Brizhik L, Eremko A, Piette B, Zakrzewski W J. Static solutions of a D-dimensional modified nonlinear Schr?dinger equation. Nonlinearity, 2003, 16: 1481-1497 | | [6] | Colin M, Jeanjean L. Solutions for a quasilinear Schr?dinger equation: A dual approch. Nonlinear Anal, 2004, 56: 213-226 | | [7] | Degiovanni M, Lancelotti S. Linking solutions for p-Laplace equations with nonlinearity at critical growth. Journal of Functional Analysis, 2009, 256: 3643-3659 | | [8] | Degiovanni M, Magrone P. Linking solutions for quasilinear equations at critical growth involving the "1-Laplace" operator. Calc Var Partial Differential Equations, 2009, 36: 591-609 | | [9] | Deng Y, Peng S, Yan S. Positive soliton solutions for generalized quasilinear Schr?dinger equations with critical growth. J Differential Equations, 2015, 258: 115-147 | | [10] | Deng Y, Peng S, Yan S. Critical exponents and solitary wave solutions for generalized quasilinear Schr?dinger equations. J Differential Equations, 2016, 260: 1228-1262 | | [11] | Ghoussoub N, Yuan C. Multiple solutions for quasi-linear PDES involving the critical Sobolev and Hardy exponents. Trans Amer Math Soc, 2000, 352(12): 5703-5743 | | [12] | Hartmann B, Zakzeweski W. Electrons on hexagonal lattices and applications to nanotubes. Phys Rev B, 2003, 68: 184302 | | [13] | Kurihura S. Large-Amplitude qusi-solitons in superfuid filme. J Math Soc Japan, 1981, 50: 3262-3267 | | [14] | Laedke E W, Spatschek K H, Stenflo L. Evolution theorem for a class of perturbed envelope soliton solutions. J Math Phys, 1983, 24: 2764-2769 | | [15] | Li Z. Positive solutions for a class of singular quasilinear Schr?dinger equations with critical Sobolev exponent. J Differential Equations, 2019, 266: 7264-7290 | | [16] | Li Z, Yuan X, Zhang Q. Existence of critical points for noncoercive functionals with critical Sobolev exponent. Appl Anal, 2022, 101: 5358-5375 | | [17] | Li Z, Zhang Y. Solutions for a class of quasilinear Schr?dinger equations with critical Sobolev exponents. J Math Phys, 2017, 58: 021501 | | [18] | Liu J Q, Wang Z Q. Soliton solutions for quasilinear Schr?dinger equations I. Proc Amer Math Soc, 2002, 131: 441-448 | | [19] | Liu J Q, Wang Y Q, Wang Z Q. Soliton solutions for quasilinear Schr?dinger equations II. J Differential Equations, 2003, 187: 473-493 | | [20] | Lions P L. The concentration-compactness principle in the calculus of variations. The limit case, Part 2. Rev Mat Iberoam, 1985, 1(2): 45-121 | | [21] | Liu J Q, Wang Y Q, Wang Z Q. Solutions for the quasilinear Schr?dinger equations via the Nehari Method. Comm Partial Differential Equations, 2004, 29: 879-901 | | [22] | Shen Y, Li Z, Wang Y. Sign-Changing critical points for noncoercive functionals. Topol Methods Nonlinear Anal, 2014, 43(2): 373-384 | | [23] | Shen Y, Wang Y. Soliton solutions for generalized quasilinear Schr?diger equations. Nonlinear Anal, 2013, 80: 194-201 | | [24] | Silva E A B, Vieira G F. Quasilinear asymptotically periodic Sch?dinger equations with critical growth. Calc Var Partial Differential Equations, 2010, 39: 1-33 | | [25] | Wang Y, Zhang Y, Shen Y. Multiple solutions for quasilinear Schr?dinger equations involving critical exponent. Appl Math Comput, 2010, 216: 849-856 | | [26] | Wang Y, Zou W. Bound states to critical quasilinear Schr?dinger equations. NoDEA Nonlinear Differential Equations Appl, 2012, 19: 194-201 | | [27] | Yang J, Wang Y, Abdelgadir A A. Soliton solutions for quasilinear Schr?dinger equations. J Math Phys, 2013, 54: 071502 |
|