数学物理学报 ›› 2025, Vol. 45 ›› Issue (3): 960-971.

• • 上一篇    下一篇

关于高斯乘积不等式的新结果 (I)

马丽1,2(),陈蓬颖1(),韩新方1,2,*()   

  1. 1海南师范大学数学与统计学院 海口 571158
    2海南师范大学数据科学与智慧教育教育部重点实验室 海口 571158
  • 收稿日期:2024-05-07 修回日期:2025-01-13 出版日期:2025-06-26 发布日期:2025-06-20
  • 通讯作者: 韩新方,Email: xfanghan@163.com
  • 作者简介:马丽,Email: malihnsd@163.com;|陈蓬颖,Email: 1353525952@qq.com
  • 基金资助:
    海南省自然科学基金(122MS056);海南省自然科学基金(124MS056)

New Results On Gauss Product Inequalities (I)

Ma Li1,2(),Chen Pengying1(),Han Xinfang1,2,*()   

  1. 1Department of Mathematics and Statistics, Hainan Normal University, Haikou 571158
    2Key Laboratory of Data Science and Intelligence Education (Hainan Normal University), Ministry of Education, Haikou 571158
  • Received:2024-05-07 Revised:2025-01-13 Online:2025-06-26 Published:2025-06-20
  • Supported by:
    Hainan Provincial Natural Science Foundation(122MS056);Hainan Provincial Natural Science Foundation(124MS056)

摘要:

$(X_1,X_2,X_3)$ 为中心化的高斯随机变量, 其协方差矩阵的对角线元素均为 $1$, 该文借助于超几何函数的性质及因式分解得到了

$E[|X_1^4X_2^3X_3^3|]\geq$E$|X_1^4|$E$|X_2^3|$E$|X_3^3|$,

等号成立当且仅当 $X_1,X_2,X_3$ 相互独立. 从而补充了现有文献中三维高斯乘积不等式的结果.

关键词: 高斯乘积不等式, 正态分布, 超几何函数, 因式分解

Abstract:

Let ($X_1$,$X_2$,$X_3$) be a centered Gaussian random vector with $D(X_i)=1$, $i=1,2,3$. By means of the properties of hypergeometric function and factorization, we prove that

$E\big[|X_1^4X_2^3X_3^3|\big]\geq$E$|X_1^4|$E$|X_2^3|$E$|X_3^3|$,

and the equal sign holds if and only if $X_1$,$X_2$,$X_3$ are independent. This complements the results of the three dimensional Gauss product inequality in the existing literature.

Key words: Gauss Product Inequality, normal Distribution, hypergeometric Function, factorization

中图分类号: 

  • O177.2