[1] |
Al-Nayef A, Diamond P, Kloeden P, et al. Bi-shadowing and delay equations. Dynam Stability Systems, 1996, 11(2): 121-134
|
[2] |
Anosov D V. On a class of invariant sets of smooth dynamical systems. Proc 5th Int Conf on Nonlin Oscill, 1970, 2: 39-45
|
[3] |
Arendt W, Batty C J K, Hieber M, et al. Vector-Valued Laplace Transforms and Cauchy Problems. Basel: Verlag, 2011
|
[4] |
Backes L, Dragičević D. A general approach to nonautonomous shadowing for nonlinear dynamics. Bull Sci Math, 2021, 1.0: 102996
|
[5] |
Backes L, Dragičević D. Hyers-Ulam stability for hyperbolic random dynamics. Fund Math, 2021, 2.5(1): 69-90
|
[6] |
Backes L, Dragičević D. Parameterized shadowing for nonautonomous dynamics. J Math Anal Appl, 2024, 5.9(1): 127584
|
[7] |
Backes L, Dragičević D. Shadowing for infinite dimensional dynamics and exponential trichotomies. Proc Roy Soc Edinburgh, 2021, 1.1(3): 863-884
|
[8] |
Backes L, Dragičević D, Pituk M, Singh L. Weighted shadowing for delay differential equations. Arch Math, 2022, 1.9(5): 539-552
|
[9] |
Bowen R. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Berlin: Springer-Verlag, 1975
|
[10] |
Chow S N, Lin X B, Palmer K J. A shadowing lemma with applications to semilinear parabolic equations. SIAM J Math Anal, 1989, 20(3): 547-557
|
[11] |
D'Aniello E, Darji U B, Maiuriello M. Generalized hyperbolicity and shadowing in $L^{p}$ spaces. J Differential Equations, 2021, 2.8: 68-94
|
[12] |
Dragičević D. Generalized dichotomies and Hyers-Ulam stability. Results Math, 2024, 79(1): Article 37
|
[13] |
Dragičević D, Pituk M. Shadowing for nonautonomous difference equations with infinite delay. Appl Math Lett, 2021, 1.0: 107284
|
[14] |
Engel K J, Nagel R. One-parameter Semigroups for Linear Evolution Equations. New York: Springer-Verlag, 2000
|
[15] |
Gao S. A shadowing lemma for random dynamical systems. J Appl Anal Comput, 2021, 11(6): 3014-3030
|
[16] |
Henry D. Geometric Theory of Semilinear Parabolic Equations. Berlin: Springer-Verlag, 1981
|
[17] |
Meyer K R, Sell G R. An analytic proof of the shadowing lemma. Funkcial Ekvac, 1987, 30: 127-133
|
[18] |
Palmer K J. Exponential dichotomies, the shadowing lemma and transversal homoclinic points. Dynamics Reported, 1988, 1: 265-306
|
[19] |
Palmer K J. Shadowing and Silnikov chaos. Nonlinear Anal, 1996, 27(9): 1075-1093
|
[20] |
Palmer K J. Shadowing in Dynamical Systems:Theory and Applications. Dordrecht: Springer Science, 2000
|
[21] |
Pazy A. Semigroups of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1983
|
[22] |
Pilyugin S Y, Sakai K. Shadowing and Hyperbolicity. Cham: Springer, 2017
|
[23] |
Pilyugin S Y. Shadowing in Dynamical Systems. Berlin: Springer-Verlag, 1999
|
[24] |
Pilyugin S Y. Shadowing in structurally stable flows. J Differential Equations, 1997, 1.0: 238-265
|
[25] |
Sell G R, You Y. Dynamics of Evolutionary Equations. New York: Springer-Verlag, 2002
|
[26] |
Yang X F, Lu T X, Pi J M, Jiang Y X. On shadowing system generated by a uniformly convergent mappings sequence. J Dyn Control Syst, 2023, 29(3): 691-702
|