| [1] | Duren P L. Theory of $H^p$ Spaces. New York: Academic Press, 1970 | | [2] | Duren P L, Schuster A. Bergman Spaces. Providence, RI: American Mathematical Soc, 2004 | | [3] | Hedenmalm H, Korenblum B, Zhu K. Theory of Bergman Spaces. Berlin: Springer, 2000 | | [4] | Zhu K. Operator Theory in Function Spaces. Providence, RI: American Mathematical Soc, 2007 | | [5] | Diamantopoulos E, Siskakis A G. Composition operators and the Hilbert matrix. Stud Math, 2000, 140(2): 191-198 | | [6] | Contreras M D, Hernandez-Diaz A G. Weighted composition operators in weighted Banach spaces of analytic functions. J Aust Math Soc, 2000, 69(1): 41-60 | | [7] | Diamantopoulos E. Hilbert matrix on Bergman spaces. Ill J Math, 2004, 48(3): 1067-1078 | | [8] | Aleman A, Montes-Rodríguez A, Sarafoleanu A. The eigenfunctions of the Hilbert matrix. Constr Approx, 2012, 36(3): 353-374 | | [9] | Bralovi? D, Karapetrovi? B. New upper bound for the Hilbert matrix norm on negatively indexed weighted Bergman spaces. Bull Malays Math Sci Soc, 2022, 45(2): 1183-1193 | | [10] | Bo?in V, Karapetrovi? B. Norm of the Hilbert matrix on Bergman spaces. J Funct Anal, 2018, 274(2): 525-543 | | [11] | Brevig O F, Perfekt K M, Seip K, et al. The multiplicative Hilbert matrix. Adv Math, 2016, 302: 410-432 | | [12] | Dostani? M, Jevti? M, Vukoti? D. Norm of the Hilbert matrix on Bergman and Hardy spaces and a theorem of Nehari type. J Funct Anal, 2008, 254(11): 2800-2815 | | [13] | Galanopoulos P, Girela D, Peláez, J á, Siskakis A G. Generalized Hilbert operators. Ann Acad Sci Fenn Math, 2014, 39: 231-258 | | [14] | Ye S, Feng G. A Derivative-Hilbert operator acting on Hardy spaces. Acta Math Sci, 2023, 43B(6): 2398-2412 | | [15] | Ye S, Feng G. Generalized Hilbert operators acting on weighted Bergman spaces and Dirichlet spaces. Banach J Math Anal, 2023, 17(3): Article 38 | | [16] | Ye S, Feng G. Norm of the Hilbert Matrix on logarithmically weighted Bergman spaces. Complex Anal Oper Theory, 2023, 17(6): Article 97 | | [17] | Ye S, Xu Y. A Derivative-Hilbert operator acting from logarithmic Bloch spaces to Bergman spaces. Acta Math Sci, 2024, 44B(5): 1916-1930 | | [18] | Ye S, Zhou Z. A Derivative-Hilbert operator acting on Bergman spaces, J Math Anal Appl, 2022, 506(1): Article 125553 | | [19] | Ye S, Zhou Z. A Derivative-Hilbert operator acting on the Bloch space. Complex Anal Oper Theory, 2021, 15(5): Article 88 | | [20] | 叶善力, 周智慧. Bloch 型空间上的广义 Hilbert 算子. 数学学报, 2023, 66(3): 557-568 | | [20] | Ye S L, Zhou Z H. Generalized Hilbert operator acting on Blocch type spaces. Acta Math Sin, 2023, 66(3): 557-568 | | [21] | Xu Y, Ye S, Zhou Z. A derivative-Hilbert operator acting on Dirichlet spaces. Open Math, 2023, 21(1): Article 20220559 | | [22] | Xu Y, Ye S. A Derivative-Hilbert operator acting from Bergman spaces to Hardy spaces. AIMS Math, 2023, 8(4): 9290-9302 | | [23] | Hu H, Ye S. Norm estimates of the Hilbert matrix operator between some spaces of analytic functions. J Geom Anal, 2025, 35(6): Article 184 | | [24] | Jevti? M, Karapetrovi? B. Hilbert matrix on spaces of Bergman-type. J Math Anal Appl, 2017, 453(1): 241-254 | | [25] | Karapetrovt? B. Norm of the Hilbert matrix operator on the weighted Bergman spaces. Glasg Math J, 2018, 60(3): 513-525 | | [26] | Littlewood J E. Lectures on the Theory of Functions. Oxford: Oxford University Press, 1944 | | [27] | Lindstr?m M, Miihkinen S, Wikman N. On the exact value of the norm of the Hilbert matrix operator on weighted Bergman spaces. Ann Fenn Math, 2021, 46: 201-224 |
|