数学物理学报 ›› 2025, Vol. 45 ›› Issue (5): 1417-1423.

• • 上一篇    下一篇

调和 Bergman 空间上 H-Toeplitz 算子与 H-Hankel 算子的交换性

董玉(),曹璎元(),李然*()   

  1. 辽宁师范大学数学学院 辽宁大连 116033
  • 收稿日期:2024-12-17 修回日期:2025-03-27 出版日期:2025-10-26 发布日期:2025-10-14
  • 通讯作者: * 李然,E-mail:liranmika@163.com
  • 作者简介:董玉, E-mail:13204293185@163.com|曹璎元, E-mail:cyy3159832826@163.com
  • 基金资助:
    国家自然科学基金(11901269);辽宁省教育厅自然科学类(JYTMS20231041)

H-Toeplitz Operators and H-Hankel Operators with Radial Symbols on Harmonic Bergman Space

Yu Dong(),Yingyuan Cao(),Ran Li*()   

  1. School of Mathematics, Liaoning Normal University, Liaoning Dalian 116033
  • Received:2024-12-17 Revised:2025-03-27 Online:2025-10-26 Published:2025-10-14
  • Supported by:
    NSFC(11901269);Natural Science Projects of the Liaoning Provincial Department of Education(JYTMS20231041)

摘要:

该文首先研究了调和 Bergman 空间上两个以径向函数为符号的 H-Toeplitz 算子的交换性, 其次给出了以径向函数为符号的 H-Toeplitz 算子与 H-Hankel 算子的乘积等于另一个 H-Toeplitz 算子或者另一个 H-Hankel 算子的充分必要条件.

关键词: 调和 Bergman 空间, H-Toeplitz 算子, 交换性, H-Hankel 算子

Abstract:

In this paper, we first study the commutativity of H-Toeplitz operators with radial symbols on the harmonic Bergman space. Next, we give some necessary and sufficient conditions for the product of an H-Toeplitz operator with a radial symbol and an H-Hankel operator to be either another H-Toeplitz operator or another H-Hankel operator.

Key words: harmonic Bergman space, H-Toeplitz operators, commutativity, H-Hankel operators

中图分类号: 

  • O177.1