| [1] | Fisher R A. The wave of advance of advantageous genes. Annals of eugenics, 1937, 7(4): 355-369 | | [2] | Kolmogorov A N, Petrovsky I G, Piskunov N S. étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologigue. Moscow Univ Bull Math, 1937, 1: 1-26 | | [3] | 王玉兰. 趋化-流体耦合模型研究进展. 西华大学学报 (自然科学版), 2016, 35(4): 30-34 | | [3] | Wang Y L. Recent advances in chemotaxis-fluid coupled model research. Journal of Xihua University (Natur Sci Edi), 2016, 35(4): 30-34 | | [4] | Pan Z G, Jia L, Mao Y Q, Wang Q. Transitions and bifurcations in couple stress fluid saturated porous media using a thermal non-equilibrium model. Appl Math Comput, 2022, 415: Art 126727 | | [5] | Fan Y L, Li L, Pan Z G. On dynamics of double-diffusive magneto-convection in a non-Newtonian fluid layer. Math Method Appl Sci, 2023, 46(13): 14596-14621 | | [6] | Coullet P, Elphick C, Repaux D. The nature of spatial chaos. Phys Rev Lett, 1987, 58(5): 431-434 | | [7] | Saarloose W. Bistable systems with propagating fronts leading to pattern formation. Phys Rev Lett, 1988, 60(25): 2641-2644 | | [8] | Kopell N, Howard LN. Plane wave solutions to reaction-diffusion equations. Stud Appl Math, 1973, 52(4): 291-328 | | [9] | Bartuccelli M V. On the asymptotic positivity of solutions for the extended Fisher-Kolmogorov equation with nonlinear diffusion. Math Method Appl Sci, 2002, 25: 701-708 | | [10] | Peletier L, Troy W. Spatial patterns described by the extended Fisher-Kolmogorov equation: Periodic solutions. SIAM J Math Anal, 1997, 28(6): 1317-1353 | | [11] | Kwapisz J. Uniqueness of the stationary wave for the extended Fisher-Kolmogorov equation. J Differ Equations, 2000, 165: 235-253 | | [12] | Ma R Y, Wei L, Chen Z. Evolution of bifurcation curves for one-dimensional Minkowski-curvature problem. Appl Math Lett, 2020, 103: Art 106176 | | [13] | 罗宏, 蒲志林. Extended Fisher-Kolmogorov 系统的整体吸引子及其分形维数估计. 四川师范大学学报 (自然科学版), 2004, 27(2): 135-138 | | [13] | Luo H, Pu Z L. Global attractor and its fractal dimension estimate for the Extended Fisher-Kolmogorov system. Journal of Sichuan Normal University (Natur Sci Edi), 2004, 27(2): 135-138 | | [14] | Ma R Y, Xu L. Existence of positive solutions of a nonlinear fourth-order boundary value problem. Appl Math Lett, 2010, 23(5): 537-543 | | [15] | 钟吉玉. 关于 Kuramoto-Sivashinsky 方程平衡解的分岔问题. 四川大学学报 (自然科学版), 2006, 43(2): 277-280 | | [15] | Zhong J Y. Bifurcation problems of equilibrium solutions for the Kuramoto-Sivashinsky equation. Journal of Sichuan University (Natur Sci Edi), 2006, 43(2): 277-280 | | [16] | 张强, 曾艳, 李桂花. 带 Neumann 边界条件的 Extended Fisher-Kolmogorov 系统的定态分歧. 四川师范大学学报 (自然科学版), 2014, 37(2): 188-191 | | [16] | Zhang Q, Zeng Y, Li G H. Steady-state bifurcation of the Extended Fisher-Kolmogorov system with Neumann boundary conditions. Journal of Sichuan Normal University (Natur Sci Edi), 2014, 37(2): 188-191 | | [17] | Sengul T, Tiryakioglu B. Dynamic transitions and bifurcations of 1D reaction-diffusion equations: the non-self-adjoint case. J Math Anal Appl, 2023, 523(1): Art 127114 | | [18] | Drame A K. Costa D G. On positive solutions of one-dimensional semipositone equations with nonlinear boundary conditions. Appl Math Lett, 2012, 25(12): 2411-2416 | | [19] | 马天, 汪守宏. 非线性演化方程的稳定性与分歧. 北京: 科学出版社, 2007 | | [19] | Ma T, Wang S H. Stability and Bifurcation of Nonlinear Evolutionary Equations. Beijing: Science Press, 2007 | | [20] | 张强, 雷开洪, 向丽. Fisher-Kolmogorov-Petrovskii-Piskunov 方程的定态分歧. 四川大学学报 (自然科学版), 2013, 50(1): 6-10 | | [20] | Zhang Q, Lei K H, Xiang L. Steady-state bifurcation of the Fisher-Kolmogorov-Petrovskii-Piskunov equation. Journal of Sichuan University (Natur Sci Edi), 2013, 50(1): 6-10 | | [21] | 郝清明, 潘志刚, 朱超. 带 Robin 边界条件 Fisher-Kolmogorov-Petrovskii-Piskunov 方程的定态分歧. 西华大学学报 (自然科学版), 2025, 44(3): 102-106 | | [21] | Hao Q M, Pan Z G, Zhu C. Steady-state bifurcation of the Fisher-Kolmogorov-Petrovskii-Piskunov equation with Robin boundary conditions. Journal of Xihua University (Natur Sci Edi), 2025, 44(3): 102-106 | | [22] | 曹倩, 李艳玲, 单炜华. 含有猎物避难所和恐惧效应的反应扩散捕食者-食饵模型的动力学. 山东大学学报 (理学版), 2023, 58(10): 43-53 | | [22] | Cao Q, Li Y L, Shan W H. Dynamics of a Reaction-Diffusion Predator-Prey model with prey eefuge and fear effect. Journal of Shandong University (Natur Sci Edi), 2023, 58(10): 43-53 | | [23] | 袁海龙, 王玉萍, 李艳玲. 一类带有交叉扩散的捕食-食饵模型的正解. 数学物理学报, 2019, 39A(3): 545-559 | | [23] | Yuan H L, Wang Y P, Li Y L. Positive solutions of a predator-prey model with cross-diffusion. Acta Math Sci, 2019, 39A(3): 545-559 | | [24] | 张强, 张正丽. 一类反应扩散方程的定态分歧. 四川大学学报 (自然科学版), 2010, 47(3): 461-463 | | [24] | Zhang Q, Zhang Z L. Steady-state bifurcation of a class of reaction-diffusion equations. Journal of Sichuan University (Natur Sci Edi), 2010, 47(3): 461-463 | | [25] | 张正丽, 张强. 一类 Cahn-Hilliard 方程的定态分歧. 四川大学学报(自然科学版), 2011, 48(4): 729-732 | | [25] | Zhang Z L, Zhang Q. Steady-state bifurcation of a class of Cahn-Hilliard equations. Journal of Sichuan University (Natur Sci Edi), 2011, 48(4): 729-732 | | [26] | 帅鲲, 蒲志林, 潘志刚. 一类带平均值约束的二元方程组的定态分歧. 四川师范大学学报 (自然科学版), 2013, 36(6): 820-823 | | [26] | Shuai K, Pu Z L, Pan Z G. Steady-state bifurcation of a class of binary equation systems with mean value constraints. Journal of Sichuan Normal University (Natur Sci Edi), 2013, 36(6): 820-823 | | [27] | Ma T. Bifurcation Theory and Applications. Singapore: World Scientific, 2005 |
|