数学物理学报 ›› 2025, Vol. 45 ›› Issue (5): 1463-1476.

• • 上一篇    下一篇

非线性双曲型 Schrödinger 方程柯西问题的解析光滑效应

郭留涛(),徐超江*()   

  1. 南京航空航天大学数学学院 南京 211100
  • 收稿日期:2024-07-10 修回日期:2025-07-18 出版日期:2025-10-26 发布日期:2025-10-14
  • 通讯作者: * 徐超江, E-mail:xuchaojiang@nuaa.edu.cn
  • 作者简介:郭留涛, E-mail:guoliutao@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金(12031006);中央高校基本科研业务费

Analytical Smoothing Effect on Cauchy Problem of Nonlinear Hyperbolic Schrödinger Equation

Liutao Guo(),Chaojiang Xu*()   

  1. School of mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211100
  • Received:2024-07-10 Revised:2025-07-18 Online:2025-10-26 Published:2025-10-14
  • Supported by:
    NSFC(12031006);Fundamental Research Funds for the Central Universities of China

摘要:

该文研究一类非线性双曲型 Schrödinger 方程的 Cauchy 问题的解析光滑效应, 对于在有限阶 Sobolev 空间给定的指数衰减的 Cauchy 初始值, 我们证明了其解关于时间变量和空间变量当 $t\neq0$ 时都是解析的, 因此双曲型 Schrödinger 方程具有类似于经典 Schrödinger方程的解析光滑效应特性.

关键词: Cauchy 问题, 拟微分算子, 解析性光滑效应, 双曲型 Schrödinger 方程

Abstract:

In this paper, we study the analytical smoothing effect of Cauchy problem for a class of nonlinear hyperbolic Schrödinger equation. For the Cauchy initial value of exponential decay given in a finite Sobolev space, we prove that the solution of the equation is analytic with respect to both time and space variables when $t\neq0$. Therefore, the hyperbolic Schrödinger equation has analytical smoothing properties similar to the classical Schrödinger equation.

Key words: Cauchy problem, Quasi-differential operator, analytical smoothing effect, hyperbolic Schrödinger equation

中图分类号: 

  • O175.2