| [1] | Benci V, Fortunato D. An eigenvalue problem for the {S}chr?dinger-Maxwell equations. Topol Methods Nonlinear Anal, 1998, 11(2): 283-293 |
| [2] | Benguria R, Brézis H, Lieb E. The Thomas-Fermi-von Weizs?cker theory of atoms and molecules. Comm Math Phys, 1981, 79(2): 167-180 |
| [3] | Lions P L. Solutions of Hartree-Fock equations for Coulomb systems. Comm Math Phys, 1987, 109(1): 33-97 |
| [4] | D'Aprile T, Mugnai D. Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv Nonlinear Stud, 2004, 4(3): 307-322 |
| [5] | Ruiz D. The Schr?dinger-Poisson equation under the effect of a nonlinear local team. J Funct Anal, 2006, 237(2): 655-674 |
| [6] | Azzollini A, D'Avenia P, Pomponio A. On the Schr?dinger-Maxwell equations under the effect of a general nonlinear term. Ann Inst H Poincaré C Anal Non Linéaire, 2010, 27(2): 779-791 |
| [7] | Chen J, Huang L, Rocha E. Ground state, bound states and bifurcation properties for a Schr?dinger-Poisson system with critical exponent. Electron J Differential Equations, 2019, 27(28): 1-23 |
| [8] | Coclite G M. A multiplicity result for the nonlinear Schr?dinger-Maxwell equations. Commun Appl Anal, 2003, 7(2): 417-423 |
| [9] | D'Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schr?dinger-Maxwell equations. Proc Roy Soc Edinburgh Sect A, 2004, 134(5): 893-906 |
| [10] | D'Avenia P. Non-radially symmetric solutions of nonlinear Schr?dinger equation coupled with Maxwell equations. Adv Nonlinear Stud, 2002, 2(2): 177-192 |
| [11] | Kikuchi H. On the existence of a solution for elliptic system related to the Maxwell-Schr?dinger equations. Nonlinear Anal, 2007, 67(5): 1445-1456 |
| [12] | Azzollini A, Pomponio A. Ground state solutions for the nonlinear Schr?dinger-Maxwell equations. J Math Anal Appl, 2008, 345(1): 90-108 |
| [13] | Zhao L, Zhao F. On the existence of solutions for the Schr?dinger-Poisson equations. J Math Anal Appl, 2008, 346(1): 155-169 |
| [14] | Sun J, Ma S. Ground state solutions for some Schr?dinger-Poisson systems with periodic potentials. J Differential Equations, 2016, 260(3): 2119-2149 |
| [15] | Alves C, Souto M, Soares S. Schr?dinger-Poisson equations without Ambrosetti-Rabinowitz condition. J Math Anal Appl, 2011, 377(2): 584-592 |
| [16] | Wang X, Liao F. Ground state solutions of Nehari-Pohozaev type for Schr?dinger-Poisson problems with zero mass. J Math Anal Appl, 2024, 533(1): 1-19 |
| [17] | Deng Y, Shuai W, Yang X. Sign-changing solutions for the nonlinear Schr?dinger-Poisson system with critical growth. Acta Math Sci, 2023, 43B(5): 2291-2308 |
| [18] | Ambrosetti A, Ruiz D. Multiple bound states for the Schr?dinger-Poisson problem. Commun Contemp Math, 2008, 10(3): 391-404 |
| [19] | Cerami G, Vaira G. Positive solutions for some non-autonomous Schr?dinger-Poisson systems. J Differential Equations, 2010, 248(3): 521-543 |
| [20] | Coclite G M. A multiplicity result for the Schr?dinger-Maxwell equations with negative potential. Ann Polon Math, 2002, 79(1): 21-30 |
| [21] | Huang L, Rocha E, Chen J. Two positive solutions of a class of Schr?dinger-Poisson system with indefinite nonlinearity. J Differential Equations, 2013, 255(8): 2463-2483 |
| [22] | Jiang Y, Zhou H. Schr?dinger-Poisson system with steep potential well. J Differential Equations, 2011, 251(3): 582-608 |
| [23] | Zhao L, Zhao F. Positive solutions for Schr?dinger-Poisson equations with a critical exponent. Nonlinear Anal, 2009, 70(6): 2150-2164 |
| [24] | Jiang Y, Zhou H. Bound states for a stationary nonlinear Schr?dinger-Poisson system with sign-changing potential in $\mathbb{R}^3$. Acta Math Sci, 2009, 29B(4): 1095-1104 |
| [25] | He Y, Li B, Long W. Infinitely many dichotomous solutions for the Schr?dinger-Poisson system. Sci China Math, 2024, 67(9): 2049-2070 |
| [26] | Ding H, Hu M, Li B. Dichotomous concentrating solutions for a Schr?dinger-Newton equation. Calc Var Partial Differential Equations, 2023, 62(6): Art 186 |
| [27] | Zheng Z, Ding H, N'Guérékata G. The space of continuous periodic functions is a set of first category in $AP(X)$. J Funct Spaces Appl, 2013, 2013: Art 275702 |
| [28] | Serra E, Tarallo M, Terracini S. On the existence of homoclinic solutions for almost periodic second order systems. Ann Inst H Poincaré Anal Non Linéaire, 1996, 13(6): 783-812 |
| [29] | Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1(2): 109-145 |
| [30] | Willem M. Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications. Boston: Birkh?user, 1996 |
| [31] | Bochner S. A new approach to almost periodicity. Proc Nat Acad Sci USA, 1962, 48(1): 2039-2043 |
| [32] | Fink A M. Almost Periodic Differential Equations. New York: Springer-Verlag, 1974 |
| [33] | Alessio F, Calanchi M. Homoclinic-type solutions for an almost periodic semilinear elliptic equation on $\mathbb{R}^n$. Rend Sem Mat Univ Padova, 1997, 97(1): 89-111 |
| [34] | Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. 2nd edition. Berlin: Springer-Verlag, 1983 |