数学物理学报 ›› 2025, Vol. 45 ›› Issue (5): 1492-1518.

• • 上一篇    下一篇

带有非稳定位势的 Schrödinger-Poisson 方程解的存在性

刘泉1,2(),叶江华3,*(),郑雄军1()   

  1. 1江西师范大学数学与统计学院 南昌 330022
    2赣南师范大学数学与计算机科学学院 江西赣州 341000
    3华中师范大学数学与统计学学院 武汉 430079
  • 收稿日期:2024-03-27 修回日期:2025-05-12 出版日期:2025-10-26 发布日期:2025-10-14
  • 通讯作者: * 叶江华, E-mail:jhye@mails.ccnu.edu.cn
  • 作者简介:刘泉, E-mail:quan_liu@jxnu.edu.cn|郑雄军,E-mail:xjzh1985@126.com
  • 基金资助:
    国家自然科学基金(12361023);江西省自然科学基金重点项目(20242BAB26001);中国科协青年人才托举工程博士生专项计划

Existence of Solution for Schrödinger-Poisson Equation with Nonstabilizing Potential

Quan Liu1,2(),Jianghua Ye3,*(),Xiongjun Zheng1()   

  1. 1School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022
    2School of Mathematics and Computer, Gannan Normal University, Jiangxi Ganzhou 341000
    3School of Mathematics and Statistics, Central China Normal University, Wuhan 430079
  • Received:2024-03-27 Revised:2025-05-12 Online:2025-10-26 Published:2025-10-14
  • Supported by:
    NSFC(12361023);Key Project of Jiangxi Provincial NSF(20242BAB26001);doctoral student special plan of the China Association for Science and Technology Youth Talent Lifting Project

摘要:

该文研究了如下 Schrödinger-Poisson 系统基态解以及束缚态解的存在性

$\begin{align*} \left\{\begin{array}{ll} -\Delta u+V(x)u+\phi (x)u=|u|^{p-2}u, \quad x\in\mathbb{R}^{3},\\ -\Delta \phi (x)=u^{2}, \quad x\in\mathbb{R}^{3}, \end{array} \right. \end{align*}$

其中 $V$ 是非稳定的位势函数并且 $p\in(4,6)$. 当位势函数 $V$$\mathbb{R}^{3}$ 上的概周期函数时, 该文利用集中紧原理证明了上述方程的壳方程 (shell equation) 存在一个基态解. 并且, 当 $V(x)=V(x^{1}, x^{2}, x^{3})$ 关于 $x^{i} (i=2,3)$$T_{i}$-周期, 且对 $(x^{2},x^{3})\in [T_{2}]\times[T_{3}]$ 关于第一个变量 $x^{1}$ 是一致概周期时, 上述系统存在一个束缚态解.

关键词: Schrödinger-Poisson 系统, 非稳定位势, 概周期函数, 集中紧原理

Abstract:

In this paper, the existence of ground state and bound state solutions for the following Schrödinger-Poisson system

$\begin{align*} \left\{\begin{array}{ll} -\Delta u+V(x)u+\phi (x)u=|u|^{p-2}u \quad \text{in} \quad\mathbb{R}^{3},\\ -\Delta \phi (x)=u^{2} \quad \text{in} \quad\mathbb{R}^{3} \end{array} \right. \end{align*}$

is studied, where $V$ is a nonstabilizing continuous potential and $p\in(4,6)$. It is proved that the shell equation has a ground state solution by using the concentration-compactness principle when the potential function $V$ is almost periodic on $\mathbb{R}^{3}$. Moreover, a bound state solution is obtained when $V(x)=V(x^{1}, x^{2}, x^{3})$ is $T_{i}$-periodic in $x^{i}$ for $i=2,3$ and almost periodic in $x^{1}$ uniformly with respect to $(x^{2},x^{3})\in [0,T_{2}]\times[0,T_{3}]$.

Key words: Schrödinger-Poisson system, nonstabilizing potential, almost periodic function, concentration-compactness principle

中图分类号: 

  • O175.25