数学物理学报 ›› 2025, Vol. 45 ›› Issue (5): 1519-1534.

• • 上一篇    下一篇

一类局部和非局部椭圆型方程的 Brezis-Nirenberg 型问题

程钰淼,方铭梓,王友军*()   

  1. 华南理工大学数学学院 广州 510640
  • 收稿日期:2024-12-03 修回日期:2025-01-09 出版日期:2025-10-26 发布日期:2025-10-14
  • 通讯作者: * 王友军, E-mail:scyjwang@scut.edu.cn
  • 基金资助:
    广东省自然科学基金(2023A1515012812)

A Class of Local and Nonlocal Elliptic Equations with Nirenberg-Brezis Problem

Yumiao Cheng,Mingzi Fang,Youjun Wang*()   

  1. School of Mathematics, South China University of Technology, Guangzhou 510640
  • Received:2024-12-03 Revised:2025-01-09 Online:2025-10-26 Published:2025-10-14
  • Supported by:
    NSF of Guangdong Province(2023A1515012812)

摘要:

该文研究了下列含局部和非局部椭圆型算子方程的 Brezis-Nirenberg 型问题

$\begin{equation*} \left\{\begin{array}{ll} - \Delta u +(-\Delta)^su= \lambda u+ |u|^{2^*-2}u,~~ & x\in \Omega,\\ u=0, & x\in \mathbb{R}^N\setminus \Omega, \end{array}\right. \end{equation*}$

其中 $ \Omega\subset \mathbb{R}^N $ ( $ N>2 $ ) 是光滑有界区域, $ s\in (0,1) $, $ 2^*= \frac{2N}{N-2} $. 对于上述问题, 存在某个 $ \lambda^* \in\left[\lambda_{1, s}, \lambda_1\right) $, 当 $ \lambda\in (\lambda^*,\lambda_1) $时, 至少存在一个正解, 而当 $ \lambda\in [\lambda_1,+\infty) $ 时, 问题不存在正解, 其中 $ \lambda_{1,s} $$ \lambda_1 $ 分别是算子 $ (-\Delta)^s $$ - \Delta +(-\Delta)^s $ Dirichlet 边值问题的第一特征值. 该文首先对 $ \lambda^* $ 的下界作了估计. 其次, 通过构造合适的环绕集合, 利用 Willem 环绕原理证明了当 $ \lambda\in [\lambda_1,+\infty) $ 时问题变号解的存在性.

关键词: 局部和非局部算子, 临界指数, 环绕

Abstract:

This article focuses on a class of local and nonlocal elliptic equations with Nirenberg-Brezis problem

$\begin{equation*} \left\{\begin{array}{ll} - \Delta u +(-\Delta)^su= \lambda u+ |u|^{2^*-2}u,~~ & x\in \Omega,\\ u=0, & x\in \mathbb{R}^N\setminus \Omega, \end{array}\right. \end{equation*}$

where $ \Omega $ is a bounded smooth domain of $ \mathbb{R}^N $ $ (N>2) $, $ s\in (0,1) $, $ 2^*= \frac{2N}{N-2} $. The above problem has at least one positive solution for $ \lambda\in (\lambda^*,\lambda_1) $ with $ \lambda^* \in\left[\lambda_{1, s}, \lambda_1\right) $, and has no positive solutions for $ \lambda\in [\lambda_1,+\infty) $, where $ \lambda_{1,s} $ and $ \lambda_1 $ is the first eigenvalue of Dirichlet boundary problem of operator $ (-\Delta)^s $ and $ - \Delta +(-\Delta)^s $, respectively. Firstly, we estimate the lower boundedness of $ \lambda^* $. Then, by establishing proper linking sets and applying Willem' linking principle, we prove the existence of nodal solution for $ \lambda\in [\lambda_1,+\infty) $.

Key words: local and nonlocal operator, critical exponents, linking

中图分类号: 

  • O175.23