数学物理学报 ›› 2025, Vol. 45 ›› Issue (5): 1577-1585.

• • 上一篇    下一篇

某类非线性微分差分方程亚纯解的结构

万沪龙,刘慧芳*()   

  1. 江西师范大学数学与统计学院 南昌 330022
  • 收稿日期:2025-01-10 修回日期:2025-02-23 出版日期:2025-10-26 发布日期:2025-10-14
  • 通讯作者: * 刘慧芳, E-mail:liuhuifang73@sina.com
  • 基金资助:
    国家自然科学基金(12261044)

The Structure of Meromorphic Solutions of Some Class of Nonlinear Differential-Difference Equations

Hulong Wan,Huifang Liu*()   

  1. School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022
  • Received:2025-01-10 Revised:2025-02-23 Online:2025-10-26 Published:2025-10-14
  • Supported by:
    NSFC(12261044)

摘要:

研究非线性微分差分方程 $ f^n(z)f^{(k)}(z)+q(z){\rm e}^{Q(z)}f(z+c)=P(z) $ 亚纯解的结构, 其中 $ n $, $ k $ 为正整数, $ q(z) $, $ Q(z) $ 为非零多项式满足 $ \deg Q\geq 1 $, $ P(z) $ 为级小于 $ \deg Q $ 的整函数. 运用 Nevanlinna 理论和对数导数模的估计, 得到方程存在特殊形式的指数多项式解.

关键词: 微分差分方程, 亚纯解, 整函数, 指数多项式

Abstract:

In this paper, we study the structure of meromorphic solutions of the nonlinear differential-difference equations $ f^n(z)f^{(k)}(z)+q(z){\rm e}^{Q(z)}f(z+c)=P(z) $, where $ n $ and $ k $ are positive integers, $ q(z) $ and $ Q(z) $ are nonzero polynomials with $ \deg Q\geq 1 $, and $ P(z) $ is an entire function of order less than $ \deg Q $. By using the Nevanlinna theory and the estimates on the module of logarithmic derivative, we prove that the above equations do posses special exponential polynomial solutions.

Key words: differential-difference equation, meromorphic solution, entire function, exponential polynomial

中图分类号: 

  • O174.52