| [1] |
Adams D R. A note on Riesz potentials. Duke Math J, 1975, 42(4): 765-778
|
| [2] |
Da Lio F. Fractional harmonic maps into manifolds in odd dimension $ n>1 $. Calc Var Partial Differential Equations, 2013, 48(3): 421-445
doi: 10.1007/s00526-012-0556-6
|
| [3] |
Da Lio F, Rivière T. Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to 1/2-harmonic maps. Adv Math, 2011, 227: 1300-1348
doi: 10.1016/j.aim.2011.03.011
|
| [4] |
Da Lio F, Rivière T. 3-Commutators estimates and the regularity of 1/2-harmonic maps into spheres. Anal PDE, 2011, 4(1): 149-190
doi: 10.2140/apde
|
| [5] |
De Longueville F L, Gastel A. Conservation laws for even order systems of polyharmonic map type. Calc Var, 2021, 60(4): Article 138
|
| [6] |
Du H, Kang Y, Wang J. Morrey regularity theory of Riviere's equation. Proc Amer Math Soc, 2024, 152(10): 4261-4268
doi: 10.1090/proc/2024-152-10
|
| [7] |
Evans L C, Gariepy R F. Measure Theory and Fine Properties of Functions. Boca Raton FL: CRC Press, 1992
|
| [8] |
Guo C Y, Qi W. Sharp Morrey regularity for an even order elliptic system. Acta Math Sin-English Ser, 2025, 41(3): 925-937
doi: 10.1007/s10114-025-3353-9
|
| [9] |
Guo C Y, Wang C Y, Xiang C L. $ L^p $-regularity for fourth order elliptic systems with antisymmetric potentials in higher dimensions. Calc Var Partial Differ Equ, 2023, 62(1): Article 31
|
| [10] |
Guo C Y, Xiang C L. Regularity of weak solutions to higher order elliptic systems in critical dimensions. Tran Amer Math Soc, 2021, 374(5): 3579-3602
doi: 10.1090/tran/2021-374-05
|
| [11] |
Guo C Y, Xiang C L, Zheng G F. The Lamm-Riviere system I: $ L^p $ regularity theory. Calc Var Partial Differential Equations, 2021, 60(6): Article 213
|
| [12] |
Guo C Y, Xiang C L, Zheng G F. $ L^p $ regularity theory for even order elliptic systems with antisymmetric first order potentials. J Math Pures Appl, 2022, 165(9): 286-324
doi: 10.1016/j.matpur.2022.07.010
|
| [13] |
Guo C Y, Xiang C L, Zheng G F. Refined conservation law for an even order elliptic system with antisymmetric potential. Acta Math Sci, 2024, 44B(6): 2111-2124
|
| [14] |
Lamm T, Rivière T. Conservation laws for fourth order systems in four dimensions. Comm Partial Differential Equations, 2008, 33: 245-262
doi: 10.1080/03605300701382381
|
| [15] |
Li J, Zhu X. Small energy compactness for approximate harmomic mappings. Commun Contemp Math, 2011, 13(5): 741-763
doi: 10.1142/S0219199711004427
|
| [16] |
Millot V, Pegon M, Schikorra A. Partial regularity for fractional harmonic maps into spheres. Arch Ration Mech Anal, 2021, 242: 747-825
doi: 10.1007/s00205-021-01693-w
|
| [17] |
Millot V, Sire Y. On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres. Arch Ration Mech Anal, 2015, 215: 125-210
doi: 10.1007/s00205-014-0776-3
|
| [18] |
Rivière T. Conservation laws for conformally invariant variational problems. Invent Math, 2007, 168: 1-22
doi: 10.1007/s00222-006-0023-0
|
| [19] |
Rivière T. The role of integrability by compensation in conformal geometric analysis. Analytic aspects of problems in Riemannian geometry: elliptic PDEs, solitons and computer imaging. Paris: Soc Math France, 2011: 93-127
|
| [20] |
Sharp B, Topping P. Decay estimates for Rivière's equation, with applications to regularity and compactness. Trans Amer Math Soc, 2013, 365(5): 2317-2339
doi: 10.1090/tran/2013-365-05
|
| [21] |
Struwe M. Partial regularity for biharmonic maps, revisited. Calc Var Partial Differential Equations, 2008, 33: 249-262
doi: 10.1007/s00526-008-0175-4
|
| [22] |
Xiang C L, Zheng G F. Sharp Morrey regularity theory for a fourth order geometrical equation. Acta Math Sci, 2024, 44B(2): 420-430
|