数学物理学报 ›› 2025, Vol. 45 ›› Issue (6): 1806-1813.

• • 上一篇    下一篇

偶数阶椭圆方程组的临界正则性与紧性理论——献给李工宝教授 70 寿辰

向长林1(), 王杰2(), 张彬航2(), 周艳平2()   

  1. 1三峡大学三峡数学研究中心 湖北宜昌 443002
    2三峡大学数理学院 湖北宜昌 443002

Borderline Regularity and Compactness Theory for An Even Order Elliptic Systems

Changlin Xiang1(), Jie Wang2(), Binhang Zhang2(), Yanping Zhou2()   

  1. 1There Gorges Mathematical Research, China Three Gorges University, Hubei Yichang 443002
    2College of Mathematics and Physics, China Three Gorges University, Hubei Yichang 443002
  • Received:2025-02-13 Revised:2025-04-27 Online:2025-12-26 Published:2025-11-18
  • Supported by:
    NSFC(12271296)

摘要:

该文研究如下偶数阶几何型椭圆偏微分方程组

$\begin{equation*} \Delta^{k}u=\sum_{l=0}^{k-1}\Delta^{l}\left\langle V_{l},{\rm d}u\right\rangle +\sum_{l=0}^{k-2}\Delta^{l}\delta\left(w_{l}{\rm d}u\right)+f \qquad \text{在}~ B_1 \subset\mathbb{R}^m~\text{上}, \end{equation*}$

其中, 假设所有系数 $ \{V_l, w_l\}_{l} $ 具有最小正则性, 并且 $ f $ 属于临界函数空间 $ L\log L(B_1) $. 该文获得上述方程弱解的最优高阶正则性结果. 作为应用, 本文进一步证明相关的紧性结果.

关键词: 偶数阶椭圆方程组, 正则性, 紧性, 衰减估计

Abstract:

We deduce optimal higher order regularity result for the even order geometrical elliptic system

$\begin{equation*} \Delta^{k}u=\sum_{l=0}^{k-1}\Delta^{l}\left\langle V_{l},{\rm d}u\right\rangle +\sum_{l=0}^{k-2}\Delta^{l}\delta\left(w_{l}{\rm d}u\right)+f \quad \text{in } B_1 \subset\mathbb{R}^m,\end{equation*}$

where all the coefficients $ \{V_l, w_l\}_{l} $ are assumed to have the smallnest regularity and $ f $ lies in the borderline function space $ L\log L(B_1) $. As an application, we also obtain a compactness result.

Key words: even order elliptic system, regularity, compactness, decay estimate

中图分类号: 

  • O175.25