数学物理学报 ›› 2018, Vol. 38 ›› Issue (5): 911-923.
收稿日期:
2017-09-30
出版日期:
2018-10-26
发布日期:
2018-11-09
作者简介:
孙宝燕, E-mail: 基金资助:
Received:
2017-09-30
Online:
2018-10-26
Published:
2018-11-09
Supported by:
摘要:
该文考虑了三维空间中具有非局部源的p-Laplace方程分别在Dirichlet边界条件和Robin边界条件下解的爆破性质.通过构造辅助函数并利用微分不等式的技巧,得到了两种边界条件下方程解的爆破时间下界估计.另外,给出了方程解在L2-范数下不会发生爆破的充分条件.
中图分类号:
孙宝燕. 具有非局部源的p-Laplace方程解的爆破时间下界估计[J]. 数学物理学报, 2018, 38(5): 911-923.
Baoyan Sun. Lower Bound of Blow-Up Time for a p-Laplacian Equation with Nonlocal Source[J]. Acta mathematica scientia,Series A, 2018, 38(5): 911-923.
1 | Li F C , Xie C H . Global and blow up solutions to a p-Laplacian equation with nonlocal source. Comput Math Appl, 2003, 46 (10/11): 1525- 1533 |
2 |
Niculescu C P , Roventa I . Generalized convexity and the existence of finite time blow-up solutions for an evolutionary problem. Nonlinear Anal, 2012, 75 (1): 270- 277
doi: 10.1016/j.na.2011.08.031 |
3 | Alikakos N D , Evans L C . Continuing of the gradient for weak solutions of a degenerate parabolic equation. J Math Pures Appl, 1983, 62 (3): 253- 268 |
4 |
Zhao J N . Existence and nonexistence of solutions for ut=div(|▽u|p-2▽u) + f(▽u, u, x, t). J Math Anal Appl, 1993, 172 (1): 130- 146
doi: 10.1006/jmaa.1993.1012 |
5 |
Yin J X , Jin C H . Critical extinction and blow-up exponents for fast diffusive p-Laplacian with sources. Math Meth Appl Sci, 2007, 30 (10): 1147- 1167
doi: 10.1002/(ISSN)1099-1476 |
6 |
Fang Z B , Xu X H . Extinction behavior of solutions for the p-Laplacian equations with nonlocal sources. Nonlinear Anal Real World Appl, 2012, 13 (4): 1780- 1789
doi: 10.1016/j.nonrwa.2011.12.008 |
7 |
Yamashita Y , Yokota T . Existence of solutions to some degenerate parabolic equation associated with the p-Laplacian in the critical case. Nonlinear Anal, 2013, 93: 168- 180
doi: 10.1016/j.na.2013.07.035 |
8 |
Qu C Y , Bai X L , Zheng S N . Blow-up versus extinction in a nonlocal p-Laplace equation with Neumann boundary conditions. J Math Anal Appl, 2014, 412 (1): 326- 333
doi: 10.1016/j.jmaa.2013.10.040 |
9 |
Levine H A . Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics:The method of unbounded Fourier coefficients. Math Ann, 1975, 214: 205- 220
doi: 10.1007/BF01352106 |
10 |
Levine H A . The role of critical exponents in blow-up theorems. SIAM Rev, 1990, 32 (2): 262- 288
doi: 10.1137/1032046 |
11 | Bandle C , Brunner H . Blow-up in diffusion equations:A survey. J Comput Appl Math, 1998, 97 (1/2): 3- 22 |
12 | Straughan B . Explosive Instabilities in Mechanics. Berlin: Springer-Verlag, 1998 |
13 |
Payne L E , Schaefer P W . Lower bounds for blow-up time in parabolic problems under Dirichlet conditions. J Math Anal Appl, 2007, 328 (2): 1196- 1205
doi: 10.1016/j.jmaa.2006.06.015 |
14 | Payne L E , Schaefer P W . Lower bounds for blow-up time in parabolic problems under Neumann conditions. Appl Anal, 2006, 85 (10): 1301- 1311 |
15 |
Payne L E , Schaefer P W . Blow-up in parabolic problems under Robin boundary conditions. Appl Anal, 2008, 87 (6): 699- 707
doi: 10.1080/00036810802189662 |
16 |
Payne L E , Philippin G A , Schaefer P W . Bounds for blow-up time in nonlinear parabolic problems. J Math Anal Appl, 2008, 338 (1): 438- 447
doi: 10.1016/j.jmaa.2007.05.022 |
17 |
Payne L E , Philippin G A , Schaefer P W . Blow-up phenomena for some nonlinear parabolic problems. Nonlinear Anal, 2008, 69 (10): 3495- 3502
doi: 10.1016/j.na.2007.09.035 |
18 | Li Y F , Liu Y , Lin C H . Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions. Nonlinear Anal Real World Appl, 2010, 11 (15): 3815- 3823 |
19 |
Mu C L , Zeng R , Chen B T . Blow-up phenomena for a doubly degenerate equation with positive initial energy. Nonlinear Anal, 2010, 72 (2): 782- 793
doi: 10.1016/j.na.2009.07.020 |
20 |
Enache C . Blow-up phenomena for a class of quasilinear parabolic problems under Robin boundary condition. Appl Math Lett, 2011, 24 (3): 288- 292
doi: 10.1016/j.aml.2010.10.006 |
21 |
Li F S , Li J L . Global existence and blow-up phenomena for nonlinear divergence form parabolic equations with inhomogeneous Neumann boundary conditions. J Math Anal Appl, 2012, 385 (2): 1005- 1014
doi: 10.1016/j.jmaa.2011.07.018 |
22 |
Wang N , Song X F , Lv X S . Estimates for the blowup time of a combustion model with nonlocal heat sources. J Math Anal Appl, 2016, 436 (2): 1180- 1195
doi: 10.1016/j.jmaa.2015.12.025 |
23 |
Di H F , Shang Y D , Peng X M . Blow-up phenomena for a pseudo-parabolic equation with variable exponents. Appl Math Lett, 2017, 64: 67- 73
doi: 10.1016/j.aml.2016.08.013 |
24 | Ding J T , Shen X H . Blow-up in p-Laplacian heat equations with nonlinear boundary conditions. Z Angew Math Phys, 2016, 67 (3): 125 |
25 |
Ma L W , Fang Z B . Bolw-up analysis for a reaction-diffusion with weighted nonlocal inner absorptions under nonlinear boundary flux. Nonlinear Anal Real World Appl, 2016, 32: 338- 354
doi: 10.1016/j.nonrwa.2016.05.005 |
26 | Payne L E , Song J C . Lower bounds for blow-up time in a nonlinear parabolic problem. J Math Anal Appl, 2009, 354 (1): 394- 396 |
27 |
Song J C . Lower bounds for the blow-up time in a non-local reaction-diffusion problem. Appl Math Lett, 2011, 24 (5): 793- 796
doi: 10.1016/j.aml.2010.12.042 |
28 |
Liu D M , Mu C L , Xin Q . Lower bounds estimate for the blow-up time of a nonlinear nonlocal porous medium equation. Acta Math Sci, 2012, 32 (3): 1206- 1212
doi: 10.1016/S0252-9602(12)60092-7 |
29 |
Liu Y . Blow-up phenomena for the nonlinear nonlocal porous medium equation under Robin bondary condition. Comput Math Appl, 2013, 66 (10): 2092- 2095
doi: 10.1016/j.camwa.2013.08.024 |
30 |
Talenti G . Best constant in Sobolev inequality. Ann Mat Pura Appl, 1976, 110: 353- 372
doi: 10.1007/BF02418013 |
31 |
Daners D . A Faber-Krahn inequality for Robin problems in any space dimension. Math Ann, 2006, 335 (4): 767- 785
doi: 10.1007/s00208-006-0753-8 |
32 |
Payne L E , Philippin G A , Vernier Piro S . Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition, Ⅱ. Nonlinear Anal, 2010, 73 (4): 971- 978
doi: 10.1016/j.na.2010.04.023 |
[1] | 李倩, 邢艳元. 具有阻尼项的粘弹性波动方程解的高能爆破[J]. 数学物理学报, 2025, 45(3): 748-755. |
[2] | 李建军,李阳晨. 一类具有对数非线性源项的分数阶 $p$-Laplace 扩散方程解的存在性和爆破[J]. 数学物理学报, 2025, 45(2): 465-478. |
[3] | 石金诚, 刘炎. 带不同幂次型非线性项的半线性三阶发展方程整体解的存在性与爆破[J]. 数学物理学报, 2024, 44(6): 1550-1562. |
[4] | 高晓茹, 李建军, 徒君. 一类带有时变系数的分数阶扩散方程解的爆破性[J]. 数学物理学报, 2024, 44(5): 1230-1241. |
[5] | 王伟敏, 闫威. 修正Kawahara方程的收敛问题与色散爆破[J]. 数学物理学报, 2024, 44(3): 595-608. |
[6] | 李锋杰, 李平. 伪抛物型 p-Kirchhoff 方程的爆破解[J]. 数学物理学报, 2024, 44(3): 717-736. |
[7] | 简慧, 龚敏, 王莉. 带部分调和势的非齐次非线性 Schrödinger 方程的爆破解[J]. 数学物理学报, 2023, 43(5): 1350-1372. |
[8] | 沈旭辉,丁俊堂. 具有梯度源项和非线性边界条件的多孔介质方程组解的爆破[J]. 数学物理学报, 2023, 43(5): 1417-1426. |
[9] | 蔡森林,周寿明,陈容. 大振幅浅水波模型的柯西问题研究[J]. 数学物理学报, 2023, 43(4): 1197-1120. |
[10] | 欧阳柏平. 非线性记忆项的Euler-Poisson-Darboux-Tricomi方程解的爆破[J]. 数学物理学报, 2023, 43(1): 169-180. |
[11] | 冯美强, 张学梅. Monge-Ampère方程边界爆破解的最优估计和不存在性[J]. 数学物理学报, 2023, 43(1): 181-202. |
[12] | 鲁呵倩,张正策. 带非线性梯度项的p-Laplacian抛物方程的临界指标[J]. 数学物理学报, 2022, 42(5): 1381-1397. |
[13] | 万雅琪,陈晓莉. 压力项属于Triebel-Lizorkin空间的三维不可压Navier-Stokes方程的正则性准则[J]. 数学物理学报, 2022, 42(5): 1473-1481. |
[14] | 邱臻,王光武. 量子Navier-Stokes-Landau-Lifshitz方程光滑解的爆破问题[J]. 数学物理学报, 2022, 42(4): 1074-1088. |
[15] | 何春蕾,刘子慧. 一类双曲平均曲率流的对称与整体解[J]. 数学物理学报, 2022, 42(4): 1089-1102. |
|