数学物理学报 ›› 2025, Vol. 45 ›› Issue (5): 1381-1391.

• • 上一篇    下一篇

空间 $A^2$$\mathcal{D}^2$ 上具有 Hyers-Ulam 稳定性的系数乘子

王春1,*(),许天周2   

  1. 1长治学院数学系 山西长治 046011
    2北京理工大学数学与统计学院 北京 100081
  • 收稿日期:2024-02-23 修回日期:2025-05-05 出版日期:2025-10-26 发布日期:2025-10-14
  • 通讯作者: * 王春,E-mail:wangchun12001@163.com
  • 基金资助:
    山西省基础研究计划(202203021211110)

The Coefficient Multipliers Between $A^2$ and $\mathcal{D}^2$ with Hyers-Ulam Stability

Chun Wang1,*(),Tianzhou Xu2   

  1. 1Department of Mathematics, Changzhi University, Shanxi Changzhi 046011
    2School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081
  • Received:2024-02-23 Revised:2025-05-05 Online:2025-10-26 Published:2025-10-14
  • Supported by:
    Fundamental Research Program of Shanxi Province(202203021211110)

摘要:

该文研究了 Bergman 空间和 Dirichlet 空间上系数乘子的 Hyers-Ulam 稳定性. 对于一个复序列 $\lambda=\{\lambda_n\}_{n=0}^\infty$ 能否作为空间 $A^2$$\mathcal{D}^2$ 之间的系数乘子, 给出了一些充分条件. 该文给出了一些在 Bergman 空间 $A^2$ 和 Dirichlet 空间 $\mathcal{D}^2$ 之间的系数乘子具有 Hyers-Ulam 稳定性的充分必要条件. 同时, 证明了在不同情形下的最佳 Hyers-Ulam 稳定性常数是存在的. 此外, 讨论了一些与主要结果相关的例子.

关键词: 系数乘子, Hyers-Ulam 稳定性, Dirichlet 空间, Bergman 空间

Abstract:

In this paper, Hyers-Ulam stability of the coefficient multipliers between Bergman space $A^2$ and Dirichlet space $\mathcal{D}^2$ are investigated. Some sufficient conditions which for that a complex sequence $\lambda=\{\lambda_n\}_{n=0}^\infty$ can be the coefficient multiplier between Bergman space $A^2$ and Dirichlet space $\mathcal{D}^2$ are given. Some necessary and sufficient conditions for that the coefficient multipliers have the Hyers-Ulam stability between Bergman space $A^2$ and Dirichlet space $\mathcal{D}^2$ are also given. This paper also show that the best constant of Hyers-Ulam stability exists under different circumstances. Moreover, some illustrative examples are also discussed.

Key words: coefficient multipliers, Hyers-Ulam stability, Dirichlet spaces, Bergman spaces

中图分类号: 

  • O177.9