| [1] | Cianchi A, Maz'ya V. Global Lipschitz regularity for a class of quasilinear elliptic equations. Communications in Partial Differential Equations, 2011, 36(1): 100-133 | | [2] | Cianchi A, Maz'ya V. Global boundedness of the gradient for a class of nonlinear elliptic systems. Archive for Rational Mechanics and Analysis, 2014, 212(1): 129-177 | | [3] | Yao F P, Zhang C, Zhou S L. Global regularity estimates for a class of quasilinear elliptic equations in the whole space. Nonlinear Analysis, 2020, 194: 111307 | | [4] | Yao F P, Zhou S L. Calderón-Zygmund estimates for a class of quasilinear elliptic equations. Journal of Functional Analysis, 2017, 272(4): 1524-1552 | | [5] | Yao F P. Global Calderón-Zygmund estimates for a class of nonlinear elliptic equations with Neumann data. Journal of Mathematical Analysis and Applications, 2018, 457: 551-567 | | [6] | DiBenedetto E, Manfredi J. On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. American Journal of Mathematics, 1993, 115(5): 1107-1134 | | [7] | Diening L, Kaplicky P, Schwarzacher S. BMO estimates for the $p$-Laplacian. Nonlinear Analysis: Theory Methods and Applications, 2012, 75(2): 637-650 | | [8] | Liang S, Zheng S Z. Gradient estimate in Orlicz spaces for elliptic obstacle problems with partially BMO nonlinearities. Electronic Journal of Differential Equations, 2018, 2018(58): 1-15 | | [9] | Acquistapace P. On BMO regularity for linear elliptic systems. Annali di Matematica Pura ed Applicata, 1992, 161: 231-269 | | [10] | Dan??ek J. The interior BMO-regularity for a weak solution of nonlinear second order elliptic systems. Nonlinear Differential Equations Applications, 2002, 9(4): 385-396 | | [11] | Yu H Y, Zheng S Z. BMO estimate to $A$-harmonic systems with discontinuous coefficients. Nonlinear Analysis: Real World Applications, 2015, 26: 64-74 | | [12] | 张俊杰, 郑神州, 于海燕. 具有部分BMO系数的非散度型抛物方程的Lorentz估计. 数学物理学报, 2019, 39A(6): 1405-1420 | | [12] | Zhang J J, Zheng S Z, Yu H Y. Lorentz estimates for nondivergent parabolic equations with partial BMO coefficients. Acta Mathematica Scientia, 2019, 39A(6): 1405-1420 | | [13] | 王支伟. 具有BMO系数的椭圆型方程在对数空间的正则性. 杭州: 浙江大学, 2012 | | [13] | Wang Z W. Regularity of Elliptic Equations with BMO Coefficients in Logarithmic Space. Hangzhou: Zhejiang University, 2012 | | [14] | 佟玉霞, 王薪茹, 谷建涛. Orlicz空间中$A$ -调和方程很弱解的$L^{\Phi}$估计. 数学物理学报, 2020, 40A(6): 1461-1480 | | [14] | Tong Y X, Wang X R, Gu J T. $L^{\Phi}$-type estimates for very weak solutions of $A$-harmonic equation in Orlicz spaces. Acta Mathematica Scientia, 2020, 40A(6): 1461-1480 | | [15] | 张雅楠, 闫硕, 佟玉霞. 自然增长条件下的非齐次$A$ -调和方程弱解的梯度估计. 数学物理学报, 2020, 40A(2): 379-394 | | [15] | Zhang Y N, Yan S, Tong Y X. Gradient estimates for weak solutions to non-homogeneous $A$-harmonic equations under natural growth. Acta Mathematica Scientia, 2020, 40A(2): 379-394 | | [16] | Adams R A, Fournier J J F. Sobolev Spaces. New York: Academic Press, 2003 | | [17] | Diening L, Ettwein F. Fractional estimates for non-differentiable elliptic systems with general growth. Forum Mathematicum, 2008, 20(3): 523-556 | | [18] | Lieberman G M. The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Communications in Partial Differential Equations, 1991, 16(2): 311-361 |
|