数学物理学报 ›› 2025, Vol. 45 ›› Issue (5): 1535-1552.

• • 上一篇    下一篇

变指数非线性Schrödinger方程尖峰解的存在性和多重性

李小璐1,吴元泽2,*()   

  1. 1中国矿业大学数学学院 江苏徐州 221116
    2云南师范大学数学学院 昆明 650500
  • 收稿日期:2024-12-07 修回日期:2025-01-20 出版日期:2025-10-26 发布日期:2025-10-14
  • 通讯作者: * 吴元泽, E-mail:wuyz850306@cumt.edu.cn
  • 基金资助:
    国家自然科学基金(12171470)

The Existence and Multiplicity of Spiked Solutions for Nonlinear Schrödinger Equation with Variable Exponents

Xiaolu Li1,Yuanze Wu2,*()   

  1. 1School of Mathematics, China University of Mining and Technology, Jiangsu Xuzhou 221116
    2School of Mathematics, Yunnan Normal University, Kunming 650500
  • Received:2024-12-07 Revised:2025-01-20 Online:2025-10-26 Published:2025-10-14
  • Supported by:
    NSFC(12171470)

摘要:

该文主要研究了以下变指数非线性 Schrödinger 方程

$\begin{equation} \left\{ \begin{aligned} &-\varepsilon^2\Delta u+V(y)u=|u|^{p(y)-1}u,\ \ \ u\in\mathbb{R}^N,\\ &u(y)\rightarrow 0,\ \ \ |y|\rightarrow +\infty, \end{aligned} \right. \nonumber \end{equation}$

其中 $\varepsilon>0$ 是充分小的参数, 空间维数 $N\geq3$, 位势函数 $V(y)$ 满足 $0, 而变指数函数 $p(y)$ 满足 $1 ($2^*=\frac{2N}{N-2}$ 为临界 Sobolev 指数). 利用 Lyapunov-Schmidt 约化方法, 该文证明了如下结论: 对任意的正整数 $k$, 在 $\varepsilon> 0$ 充分小时, 该方程存在一个含有 $k$ 个峰的尖峰解, 并且这 $k$ 个峰在 $\varepsilon\to 0$ 时分别集中于位势函数 $V(y)$$k$ 个临界点上.

关键词: 约化方法, Schrödinger 方程, 变指数, 尖峰解, 多重性

Abstract:

In this paper, we mainly study the following nonlinear Schrödinger equation with variable exponents

$\begin{equation} \left\{ \begin{aligned} &-\varepsilon^2\Delta u+V(y)u=|u|^{p(y)-1}u,\ \ \ u\in\mathbb{R}^N,\\ &u(y)\rightarrow 0,\ \ \ |y|\rightarrow +\infty, \end{aligned} \right. \nonumber \end{equation}$

where $\varepsilon>0$ is a sufficiently small parameter, the spatial dimension $N\geq3$, the potential function $V(y)$ satisfies $0, and the variable exponent function $p(y)$ satisfies $1($2^*=\frac{2N}{N-2}$ is the critical Sobolev exponent). By employing the Lyapunov-Schmidt reduction method, we prove that for any positive integer $k$, when $\varepsilon>0$ is sufficiently small, there exists a sharp peak solution to the equation with $k$ peaks, and these $k$ peaks are concentrated at the $k$ critical points of the potential function $V(y)$ as $\varepsilon \rightarrow 0$, respectively.

Key words: Lyapunov-Schmidt reduction method, Schrödinger equation, variable exponent, spiked solutions, multiplicity

中图分类号: 

  • O175.29